~	_	- 0					
124Warning:- Please write your Roll No. in the space provided and sign. Roll No Sig. of Student							
Objective) SID-1-24 (Group	1)	Paper (I)					
Time Allowed:- 20 minutes PAPER COL	DE 2471 Maxir	num Marks:- 17					
Note:- You have four choices for each objective type question as A, B, C and D. The choice which you think is correct; fill hat circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will hat circle in front of that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the esult in zero mark in that question. Write PAPER CODE, which is printed on this question paper, on the both sides of the esult in zero mark in that question. Use of Ink Remover or Answer Sheet and fill bubbles accordingly, otherwise the student will be responsible for the situation. Use of Ink Remover or Q. 1 White correcting fluid is not allowed. 1) The percentage of uncertainty for V and I is 2% and 6% respectively. Hence, total uncertainty in							
1) The percentage of uncertainty for valid 1 is 270	und or the p						
the value of $R = V/I$ is							
(A) 8% (B) $\frac{1}{3}$ %	(C) 3%	(D) 4%					
3) A vector of 10N making an angle of 60° with y-	(C) 3.15×10^{16} years axis. Its x-component is e 8.66 N	qual to (D) 10 N					
When a massive body collides with a body of ne	egligible mass. What is th	e final velocity of					
massive body if its initial velocity is 3 m/s (A) 10 m/s (B) 15 m/s	(C) 20 m/s	(D) Information is not enough					
5) Which of the following can be possessed by a n (A) Force (B) Momentum	(C) impaise	(D) Power					
The formula $W = \vec{F} \cdot \vec{d}$ have two restrictions. Pi	ck the correct one	(D) 5: start and					
(A) \vec{F} can vary but \vec{d} (B) \vec{F} can vary but d must be in circle must be in straigh	t average but d is it	be curved					
7) θ , ω , α , τ , L all these five parameters can	m (C) Angular velocity	(D) Angular velocity					
applied externally 'L' is not fixed	um (C) Angular velocity ω' is decreased	'w' is increased					
8) Centripetal force is acted along (A) Straight line (B) Curved line	(C) Circular path	(D) Elliptical path					
9) Bernoulli's theorem can be reduced to (A) Torricelli's theorem (B) Both Torricelli's but not to venturi's theorem and relation venturi's relation	but not to Torricelli's	(D) This equation can not be reduced					
	theorem	intial phase is 270°					
10) What is the equation of the phase for a vibrating (A) $x_0 \sin \omega t$ (B) $x_0 \cos \omega t$	ng body in a circle, when $(C) - x_o \sin \omega t$	(D) $-x_o \cos \omega t$					
11) How speed of sound varies with temperature. (A) $v \propto \frac{1}{T}$ (B) $v \propto \frac{1}{\sqrt{T}}$	(C) $v \propto T$	(D) $v \propto \sqrt{T}$					
12) At which angle, we get more orders of spectra (A) 45° (B) 90° 13) If a gas is maintained at 8000 N/m² in a container	with niston having area 0.1	(D) 30° 0 m ² . If the gas expands and					
piston is pushed up through a distance of 10 of	(C) 40 J	(D) 80 J					
14) For diatomic gas $C_v = \frac{5R}{2}$, therefore " γ " for the	his gas is	(D) 5.7					
(A) $\frac{7}{5}$ (B) $\frac{5}{7}$	(C) 7.5	(2)					
1101 25	000 (1) P.T.()					

1129 - 1124 -- 25000 (1) P.T.O

(e 3/F)

1		1.1.6	14-	1	1
5-	For rotational eq	will brium,	the 1	ralne	4
	force in the	fallowing	figu	e i	<u></u>
	7	7 0	10		-
	on 12 N 5) 4N			`
					12 1
		1.5		1 /2	<u>n</u>
	c) 2N 0	1) 6 N	E	14m	
					•
	1				
16-	In the oce an	ms ne	-7-	V	
16-		Lange	_		
	Shown in the	Tom			***************************************
	hon the freq	unuy			
	a) f=5f	b) 1	1g = 9	£,	
	73	35			
	C2 1 - 31	d3	f. =	7£.	
	$c) f_3 = 3 f_1$		1.7.19		
	Up a light ray i	in ci deni	t with	om c	mgle
17-		· · · · · · · · · · · · · · · · · · ·		the	0
		tical ough		me	
	predicted ray of l	ight after	incide	ull	A-14
			i i)
	a) light ray follows	pate 1	and the second second second second second	1	2
		nata 2	1	1	+3
	5) light say follows	<i>y</i> •	107	Oc >	4
	c) light ray follows	path 3	***************************************		
	d) light say follow	s path 4	4		
	0 0 0	V			

1124 Warning:- Please, do not write anything on this question paper except your Roll No. (Session 2020-22 to 2023-25) (Inter Part - I) Paper (I) Physics (Subjective) Group (I) Time Allowed: 2.40 hours Section ----- I Maximum Marks: 68 Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ 2. Why do we find it useful to have two units for the amount of substance kilogram and the mole? (i) Write the dimensions of pressure and density (iii) What are supplementary units? Define only one unit. (ii) Add the following masses given in kg upto appropriate precision. 2.189, 0.089, 11.8 and 5.32? (iv) Under what circumstances would a vector have components that are equal in magnitude? (v) (vi) What is the unit vector in the direction of the vector $\vec{A} = 4\hat{i} + 3\hat{j}$? Is it possible to add a vector quantity to a scalar quantity? Explain. (vii) What is ballistic missile? Define its trajectory. (viii) Show that the area between the velocity time graph is numerically equal to the distance covered by the object. (ix) Motion with constant velocity is a special case of motion with constant acceleration. Is this statement true? Discuss. (x) Calculate the work done in kilo joules in lifting a mass of 10 kg through a vertical height of 10 m. (xi) Differentiate between geyser and aquifer. (xii) $8 \times 2 = 16$ Answer briefly any Eight parts from the followings:-3. Why does a diver change his body positions before and after diving in the pool? (i) Show that orbital angular momentum, $L_a = mvr$ (ii) State the direction of the following vectors in simple situations; angular momentum and angular velocity. (iii) Prove that $a_T = r\alpha$ where, $a_T =$ tangential acceleration, r = radius of circle, $\alpha =$ angular acceleration. (iv) Why does droplets appear to be suspended in air? (vi) What is meant by drag force? (v) Name two characteristics of simple harmonic motion. (vii) Describe some common phenomena in which resonance plays an important role. (viii) (x) Prove that $v = f\lambda$ (ix) Define the phenomenon of resonance. Explain why sound travels faster in warm air than in cold air? (xii) Explain the terms (a) trough (b) Antinode (xi) Answer briefly any Six parts from the followings:- $6 \times 2 = 12$ 4. How is the distance between interference fringes affected by the separation between the slits of (i) Young's experiment? Can fringes disappear? Write two steps of Huygen's principle. What is its importance. (ii) How would you distinguish between un-polarized and plane-polarized lights? (iii) How you can increase the resolving power of a telescope? (iv) How the power is lost in optical fibre through dispersion? Explain. (v) A telescope is made of an objective of focal length 30 cm and an eye piece of 5 cm, both convex (vi) lenses. Find the angular magnification. Give an example of a process in which no heat is transferred to or from the system but the (vii) temperature of the system changes. How "Human Metabolism" provides an example of energy conservation and satisfy the first law (viii) of thermodynamics. What is Boltzman Constant. Calculate its numerical value. (ix) Note: Attempt any three questions. Section ----- II $(8 \times 3 = 24)$ Define and explain the term torque. Derive expression for torque due to force acting on a rigid body. 5. (a)

- - Prove that for angles of projection, which exceed or fall short of 45° by equal amounts, the ranges are equal. (b)

Discuss interconversion of Potential energy and Kinetic energy. (a) 6.

A stationary wave is established in a string which is 120 cm long and fixed at both ends. The string vibrates in (b) four segments, at a frequency of 120 Hz. Determine its wavelength and the fundamental frequency.

7. What is the simple pendulum. Show that the motion of a simple pendulum is simple harmonic. Also derive expression for its time period and frequency.

- A gramophone record turntable accelerates from rest to an angular velocity of 45.0 rev min-1 (b) in 1.60 s. What is its average angular acceleration.
- Define molar specific heat of gas. Also prove $C_p C_v = R$ 8. (a)
 - Water flows through a hose, whose internal diameter is 1cm at a speed of 1ms⁻¹. (b) What should be the diameter of the nozzle if the water is to emerge at 21ms⁻¹.
- Describe the working of compound microscope, derive an expression for magnifying power 9. (a) and write the formula of length of compound microscope.
 - X rays of wavelength 0.150 nm are observed to undergo a first order reflection at a Bragg angle of 13.3° from a quartz (SiO₂) crystal. What is the interplanar spacing of the reflecting planes in the crystal?