		341	11/10			
1123		your Roll No. in the sp (Session 2019-21 to	ace provided and sign	f Student		
Matha	(Inter Part – I)	(Group-II)	51g. 0	Paper (I)		
	matics (Objective)	PAPER COI	DE 2104 May	ximum Marks:- 20		
Note:- that circ result in Answer white co	the in front of that question not zero mark in that question. We Sheet and fill bubbles accordurecting fluid is not allowed.	ch objective type question as umber. Use marker or pen to rite PAPER CODE, which ingly, otherwise the student v	A, B, C and D. The choice of fill the circles. Cutting or is printed on this question	e which you think is correct; fill filling two or more circles will paper, on the both sides of the ituation. Use of Ink Remover or Q. 1		
1)	If $\frac{1}{k}$, $\frac{1}{2k+1}$, $\frac{1}{4k-1}$ are	in H.P, then k equals.				
	(A) 3	(B) 4	(C) 2	(D) 1		
2)	The real part of $\frac{1+3i}{2i}$ eq	uals				
	(A) $^{2}/_{3}$	(B) $^{3}/_{2}$	(C) 1	(D) 2		
3)	The conjunction of two	logical statements p and	d q is denoted by:			
	(A) $p \wedge q$	(B) $p \vee q$	(C) $\sim p \rightarrow q$	(D) $p \to q$		
4)	Let $A = [a_{ij}]_{3\times 4}$, then no	umber of elements in A	are.			
	(A) 3	(B) 4	(C) 7	(D) 12		
5)	5) If 'A' is a symmetric matrix, then A ² will also be					
	(A) Hermitian	(B) Skew Hermitian	(C) Symmetric	(D) Skew Symmetric		
6)	(x-1) is a factor of p	oolynomial.				
	(-) 26 1 136 1 2	(B) $x^2 + 4x - 3$	(C) $x^2 + 4x + 5$	(D) $x^2 + 4x - 5$		
7)	7) If the roots of equation $ax^2 + bx + c = 0$ are real and equal, then $b^2 - 4ac$ will be					
	(A) 0	(B) a	(C) b	(D) <i>c</i>		
8) The proper rational frac	ction is				
	(A) $\frac{x^2+1}{(x-1)(x-2)}$	$(B) \underbrace{x}_{(x-1)(x-2)}$	$(C) \frac{x^2}{(x-1)(x-2)}$	(D) $\frac{x^2+3}{(x-1)(x-2)}$		
9) If $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is A.Ms b	etween a and b, then n	will be equal to.			
	(A) 0	(B) 2	(C) 1	(D) 3		
	P,T.O	1117A	1123 1100			
	V o a		ġ.	1921,15		
	•					

	(2	2)-SGD-11-2-	2.0			
10) Solution of $\cot \theta = -\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{3}}$ in 1st quadrant will be.	390-11-2-	-23			
(A) $\frac{\pi}{3}$	(B) $\frac{\pi}{2}$	(C) $\frac{\pi}{4}$	(D) $\frac{\pi}{6}$			
11) If A and B are two independent events, then $P(A \cap B)$ will be.						
(A) $P(A) + P(B)$	(B) $P(A) - P(B)$	(C) $P(A)$. $P(B)$	(D) $\frac{P(A)}{P(B)}$			
12) If ${}^{n}C_{12} = {}^{n}C_{8}$, then <i>n</i> equals.						
(A) 8	(B) 12	(C) 16	(D) 20			
13) The sum of odd co-efficients in the expansion of $(1 + x)^n$ is equal to.						
(A) 2	(B) 2^{n-1}	(C) 3^n	(D) 4^n			
14) 2^{nd} term in the expansion of $(4-3x)^{1/2}$ is						
(A) $\frac{3x}{2}$	$(B) - \frac{3x}{2}$	(C) $-\frac{3x}{4}$	(D) $\frac{3x}{4}$			
15) $\sin^2 \frac{\pi}{6} + \sin^2 \frac{\pi}{3} + \tan^2 \frac{\pi}{4}$ is equal to.						
(A) 2	(B) 0	(C) 3	(D) 4			
16) $\frac{2tan\theta}{1+tan^2\theta}$ will be equal	to.					
(A) $sin\theta$	(B) $\cos\theta$	(C) Cos20	(D) $sin2\theta$			
17) Period of Cot $\frac{x}{2}$ is						
(A) $\pi/2$	(B) 2 π	(C) 4π	(D) π			
18) $\frac{a}{\sin\alpha} = \frac{b}{\sin\beta} = \frac{c}{\sin\gamma}$ is o	called					
(A) Cosines law	(B) Sines law	(C) Tangents law	(D) Half angle law			
19) In equilateral triangle having side 3, 'R' will be euqal to						
(A) 2	(B) $2\sqrt{3}$	(C) 3	(D) $\sqrt{3}$			
20) The value of Sin $(Cos^{-1}x)$ equals						
(A) $x\sqrt{1+x^2}$	(B) $x\sqrt{1-x^2}$	(C) $\sqrt{1-x^2}$	(D) $\sqrt{1+x^2}$			
1	117A - 1123	11000 (2)				

1123 Warning:- Please, do not write anything on this question paper except your Roll No. Mathematics (Subjective) (Session 2019-21 to 2022-24) Paper (I)

Time Allowed: 2.30 hours (Inter Part - I) (Group-II) Maximum Marks: 80 Section ------I

2. Answer briefly any Eight parts from the followings:-

 $8 \times 2 = 16$

- (i) Define additive identity and additive inverse properties of real numbers.
- (ii) Prove $\sqrt{3}$ is an irrational number. (iii) Define Aristotlian Logic.
- (iv) Write converse and inverse of $\sim p \rightarrow q$.
- (v) Give the table for addition of elements of the set of residue classes modulo 4.
- (vi) Define rectangular matrix with example. (vii) If $A = \begin{bmatrix} 5 & 3 \\ 1 & 1 \end{bmatrix}$, find its multiplicative inverse.
- (viii) If $B = \begin{bmatrix} 5 & -2 & 5 \\ 3 & -1 & 4 \\ -2 & 1 & -2 \end{bmatrix}$ find B_{22} and B_{23}
- (ix) Find two consecutive numbers whose product is 132.
- (x) If α, β are the roots of $x^2 px p c = 0$ Prove that $(1+\alpha)(1+\beta) = 1 c$.
- (xi) Define Remainder theorem. (xii) Find Four fourth roots of 625.
 - 3. Answer briefly any Eight parts from the followings:-

 $8 \times 2 = 16$

- (i) Resolve $\frac{1}{x^2-1}$ into partial fractions. (ii) If $S_n = n(2n-1)$, then find the Arithmetic series.
- (iii) How many terms of the series -7+(-5)+(-3)+.... amount to 65?
- (iv) Insert two G.Ms between 2 and 16.
- (v) Find A,G,H if a=-2, b=-8, G<0 and verify that A<G<H
- (vi) Find the sum of the infinite geometric series $\frac{1}{5} + \frac{1}{25} + \frac{1}{125}$
- (vii) How many ways can 4 keys be arranged on a circular key ring.
- (viii) Find the value of 'n' if "C₈="C₁₂ (ix) Define Sample Space and Events.
- (x) Show that $\frac{n^3+2n}{3}$ represents an integer for n=1,2.
- (xi) Find the term independent of 'x' in the expansion of $\left(x \frac{2}{x}\right)^{10}$.
- (xii) Expand $(1-x)^{-3}$ upto 4 terms.

1118A - 1123 - 11000 P.T.O

635

 $9 \times 2 = 18$

- Answer briefly any Nine parts from the followings:-Convert the angle $\theta = 21.256^{\circ}$ to $D^{\circ}M'S''$ form. (ii) Define angle in standard position with figure. 4. (i)
- Verify $cos2\theta = 2cos^2\theta 1$. when $\theta = 30^\circ, 45^\circ$. (iii)
- Show that $\frac{\tan\alpha + \tan\beta}{\tan\alpha \tan\beta} = \frac{\sin(\alpha + \beta)}{\sin(\alpha \beta)}$ (iv)
- Express $\cos(x+y)\sin(x-y)$ as sum or difference.
- By using fundamental Law of trigonometry, show that $(\sin \frac{\pi}{2} + \alpha) = \cos \alpha$. (v)
- Find the period of $\sin \frac{x}{5}$. (viii) Solve the triangle ABC in which $\gamma = 90^{\circ}$ a = 3.28 b = 5.74. (vi) (vii)
- The area of triangle is 2437, if a=79, c=97. Then find angle β . (ix)
- Find the area of the triangle ABC, b=37 c=45 α = 30°50′ (x)
- Evaluate without using calculator, $cos^{-1}(-\frac{1}{2})$ (xii) Solve $sin^2 x + cos x = 1$ where $x \in [0,2\pi]$. (xi)
- Define Trigonometric equation. (xiii)

Note: Attempt any three questions.

- Find inverse of A = $\begin{bmatrix} 2 & 1 & 0 \\ 1 & 1 & 0 \\ 2 & -3 & 5 \end{bmatrix}$ and show that $A^{-1}A = I_3$
 - (b) If α, β are roots of $px^2 + qx + q = 0$ then prove that $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{q}{p}} = 0$.
- 6. (a) Resolve $\frac{9x-7}{(x^2+1)(x+3)}$ into partial fractions.
- (b) Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$. 7. (a) If $y = \frac{2}{3}x + \frac{4}{9}x^{2} + \frac{8}{27}x^{3} + \dots$ and if 0 < x < 3/2 then show that $x = \frac{3y}{2(1+y)}$
 - Find the coefficient of x^5 in the expansion of $\left(x^2 \frac{3}{2x}\right)^{10}$
- Show that the area of a sector of a circular region of radius r is $\frac{1}{2}r^2\theta$, where θ is the circular measure of the central angle of the sector.
 - Prove that $\sin\frac{\pi}{9}\sin\frac{2\pi}{9}\sin\frac{\pi}{3}\sin\frac{4\pi}{9} = \frac{3}{16}$ (b)
- Prove that: $abc(sin\alpha + sin\beta + sin\gamma) = 4\Delta s$.
 - Prove that; $2tan^{-1}\frac{1}{3} + tan^{-1}\frac{1}{7} = \frac{\pi}{4}$

1118A - 1123 - 11000