

10) In any	Triangle ABC,	with usual notation	$\frac{b-c}{b+c}=$	540	-42	-21	•
			b+c	- 1-			١

(A)
$$\frac{\tan\frac{\beta-\gamma}{2}}{\tan\frac{\beta+\gamma}{2}}$$
 (B) $\frac{\tan\frac{\beta+\gamma}{2}}{\tan\frac{\beta-\gamma}{2}}$ (C) $\frac{\tan\frac{\alpha-\gamma}{2}}{\tan\frac{\alpha+\gamma}{2}}$

(B)
$$\frac{\tan\frac{\beta+\gamma}{2}}{\tan\frac{\beta-\gamma}{2}}$$

(C)
$$\frac{\tan\frac{\alpha-\gamma}{2}}{\tan\frac{\alpha+\gamma}{2}}$$

(D)
$$\frac{\tan\frac{\alpha+\beta}{2}}{\tan\left(\frac{\alpha-\beta}{2}\right)}$$

11) Value of
$$\sec\left(\sin^{-1}\frac{\sqrt{3}}{2}\right) =$$

- (A) $\frac{1}{2}$

12) If
$$\sin x = \cos x$$
 then $x =$

- (A) 45°
- (B) 30°
- (C) 0°

13) G.M between
$$2i$$
 and $8i$ equals

- $(A) \pm 4$
- (B) 5i
- (D) $\pm 4i$

14) For independent events
$$P(A \cap B) =$$

(A)
$$P(A) + P(B)$$

(B)
$$P(A) - P(B)$$

(C) P(A) . P(B)

(D)
$$\frac{P(A)}{P(B)}$$

15) Expansion of
$$(1-2x)^{1/3}$$
 is valid, if

(A)
$$|x| < 1$$

(B)
$$|x| < \frac{1}{3}$$

(C)
$$|x| < 2$$

(D)
$$|x| < \frac{1}{2}$$

$$16) \quad Cot^2\theta - Co\sec^2\theta =$$

(C) 0

(D) 2

(A)
$$\frac{1}{2}$$

(B)
$$-\frac{1}{2}$$

(C)
$$\frac{\sqrt{3}}{2}$$

(D)
$$\frac{-\sqrt{3}}{2}$$

18)
$$\cos 2 \alpha =$$

- (A) $2\sin^2\alpha 1$
- (B) $2\cos^2\alpha 1$
- (C) $2\cos\frac{\alpha}{2}Sin\frac{\alpha}{2}$
- (D) $1-2\cos^2\alpha$

19) Period of Cot 8x is

- (A) 8π

- (D) π

20) Cot
$$\frac{\alpha}{2}$$
 =

(A)
$$\sqrt{\frac{s(s-c)}{(s-b)(s-a)}}$$

(B)
$$\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}$$

(A)
$$\sqrt{\frac{s(s-c)}{(s-b)(s-a)}}$$
 (B) $\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}$ (C) $\sqrt{\frac{(s-b)(s-c)}{s(s-a)}}$ (D) $\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}$

(D)
$$\sqrt{\frac{s(s-a)}{(s-b)(s-c)}}$$

Please, do not write anything on this question paper except your Roll No. 1121 Warning:-

Mathematics (Subjective)

(Session 2017-19 to 2020-22)

Paper (I)

Time Allowed: 2.30 hours

(Inter Part - I) Group II

Maximum Marks: 80

Section ----

Answer briefly any Eight parts from the followings:-2.

 $8 \times 2 = 16$

- Find the multiplicative inverse of (-4, 7) (ii) Show that $\forall z_1, z_2 \in C$, $z_1 + z_2 = \overline{z_1} + \overline{z_2}$ (i)
- Find the difference of the complex numbers (8, 9) and (5, -6) (iii)
- Show that the statement $(p \land q) \rightarrow p$ is a tautology (v) If $A = \{a, \{b, c\}\}$, then find P(A). (iv)
- Write the set builder notation of the set. $\{0, \pm 1, \pm 2, \dots \pm 1000\}$ (vi)
- Find the matrix X if: $\begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$ (vii)
- Show that $\begin{vmatrix} a+l & a & a \\ a & a+l & a \end{vmatrix} = l^2(3a+l)$ (ix) If $A = \begin{bmatrix} 4 & \lambda & 3 \\ 7 & 3 & 6 \\ 2 & 3 & 1 \end{bmatrix}$ is singular. Find the value of λ (viii)
- (x)
- Find the roots of the equation: $16x^2 + 8x + 1 = 0$ by using Quadratic formula. (xi)
- By using remainder theorem, find the remainder when the polynomial $x^2 + 3x + 7$ is divided by x+1(xii)
 - Answer briefly any Eight parts from the followings:-3.

 $8 \times 2 = 16$

- Resolve into Partial Fractions, (i)
- Write into Partial fractions without finding the constants $\frac{9}{(x+2)^2(x-1)}$ (ii)
- Find the indicated term of the following sequence 1, -3, 5, -7, 9, -11,, a₈. (iii)
- If the nth term of the A.P is 3n-1, find arithmetic progression. (iv)
- Find the 12th term of the geometric sequence 1+i,2i,-2+2i,----(v)
- If the numbers $\frac{1}{k}$, $\frac{1}{2k+1}$ and $\frac{1}{4k-1}$ are in harmonic sequence, find k. (vi)
- Evaluate $^{16}P_4$. (viii) In how many ways can a necklace of 8 beads of different colours be made? (vii)
- Find the value of n, when ${}^{n}C_{5} = {}^{n}C_{4}$ (x) Calculate by means of binomial theorem (0.97)³ (ix)
- Expand up to 3 terms $(1-x)^{1/2}$ (xi)
- If x is so small that its square and higher powers be neglected, then show that $\frac{\sqrt{4+x}}{(1-x)^3} \approx 2 + \frac{25}{4}x$ (xii)

1134A - 1121 ALP - 25000 P.T.O

(i) Convert 54° 45' into radians

(ii) Verify
$$Sin^2 \left(\frac{\pi}{6}\right) + Sin^2 \left(\frac{\pi}{3}\right) + tan^2 \left(\frac{\pi}{4}\right) = 2$$

- Prove that $\cos^4 \theta \sin^4 \theta \cos^2 \theta \sin^2 \theta \ \forall \theta \in R$. (iii)
- Without using tables write down the value of cos 315° (iv)

(v) Prove that
$$\tan (45^\circ + A) \tan (45^\circ - A) = 1$$
 (vi) Prove that $\frac{\sin A + \sin 2A}{1 + \cos A + \cos 2A} = \tan A$

- Find the period of 3 cos $\left(\frac{x}{5}\right)$ (viii) Find the value of Cot 89°9' (vii)
- Find the area of $\triangle ABC$ having a= 200, b=120, $\gamma = 150^{\circ}$ (ix)
- In $\triangle ABC$ if a = 13, b = 14, c = 15 find R (x)
- Show that $\sin^{-1}(-x) = -\sin^{-1}(x)$ (xii) Solve the equation $\sin x$. Find the solutions of $\sin x = -\frac{\sqrt{3}}{2}$ which lie in $[0, 2\pi]$ (xi)

Note: Attempt any three questions.

 $(10\times3=30)$

- Use cramer's rule to solve the system of Equations $x_1 + x_2 2x_3 = -4$ $-x_1 + 2x_2 - x_3 = 1$
- Use synthetic division to find the values of p and q if x+1 and x-2 are the factors of the polynomial $x^3 + px^2 + qx + 6$ 6. (a) Resolve into Partial fractions $\frac{9x 7}{(x^2 + 1)(x + 3)}$
- - (b) If the (positive) Geometric Mean and Harmonic Mean between two numbers are 4 and $\frac{16}{5}$, find the numbers.
- 7. (a) Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$ (b) Find 6th term in the expansion of $\left(x^{2} \frac{3}{2x}\right)^{10}$
- If $\sin \theta = -\frac{1}{\sqrt{2}}$ and the terminal arm of angle is not in quad. III Find the values of remaining trigonometric functions.
 - **(b)** Prove that $\frac{2\sin\theta\sin2\theta}{\cos\theta+\cos3\theta} = \tan2\theta\tan\theta$
- 9. (a) Prove that $r = 4R \sin \frac{\alpha}{2} \sin \frac{\beta}{2} \sin \frac{\gamma}{2}$ (b) Prove that $2\tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$

1134A -- 1121 ALP -- 25000