1119 Warning:- Please wr (Inter Part - I)	ite your Roll No. in the	space provided and sign.	Roll No
Mathematics (Objective)	(Session 2015-17		g. of Student
ime Allowed:- 30 minutes	DADED CO		per (I)
lote:- You have four choices for at circle in front of that question sult in zero mark in that question	Write PAPER CODE, white ordingly, otherwise the student d.	as A, B, C and D. The choin to fill the circles. Cutting	aximum Marks:- 20 ice which you think is correct; fill or filling two or more circles will on paper, on the both sides of the situation. Use of Ink Remover or Q. 1
(A) $\frac{1+2i}{5}$		(C) 1-2i	(D) 1 · 2:
5	(B) $\frac{-1+2i}{5}$	(C) $\frac{1-2i}{5}$	(D) $\frac{1+2i}{3}$
2) The number of identity elements in a group is			**
(A) Finite	(B) 2	(C) 3	(D) 1
3) The matrix $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$ is		* *	
(A) Null matrix	(B) Identity matrix	(C) Diagonal matrix	(D) Stalar matrix
4) If $\begin{vmatrix} K & 4 \\ 4 & K \end{vmatrix} = 0$. Then val	ue of K is		(b) Ografianix
$(A) \pm 16$	(B) 0	(C) ± 4	(D) £8
5) The product of roots of	the equation $3x^2 + 4x = 0$		
	(B) $\frac{4}{3}$	(C) 0	(b) 4
6) When $P(x) = x^3 + 4x^2$.	2x + 5 is divided by $(x -$	l), remainder is	
(A) 10	(B) -10	(C) 8	(D) -8
7) If $(2x+1) = A(x+1) + B$	B(x+2), then $A =$	-0	
(A) 3	(B) 4	(C) 5	(D) 1
8) The harmonic mean bet	ween 3 and 7 is		
(A) $\frac{5}{21}$	(B) $\frac{21}{5}$	(C) 5	(D) 21
9) If A, G, H have their use	ual meaning, $G^2 =$		
(A) H	(B) A	(C) A×H	(D) A/H
10) "P _n =			7H
(A) n	(B) 0	(C) 1	(D) n!
P.T.C	1133 - 11	19 26000 (1	
	SGD-	P1-11-19	

11) If ${}^{n}C_{10} = {}^{n}C_{14}$ the	en n =		
(A) 24	(B) 8	(C) 20	(D) 18
12) The number of t	erms in the expension of (1+	$x)^{1/2}$ is	
(A) 3	(B) 4	(C) Infinite	(D) Finite
13) The sum of coef	ficients in the expension of	$(1+x)^5$ is	
(A) 8	(B) 16	(C) 32	(D) 64
14) $\cot^2 \theta - \cos ec^2 \theta$	= /		
(A) 2	(B) -1	(C) 1	(D) 0
15) $\tan\left(\frac{3\pi}{2} + \theta\right) =$			
(A) $\cot \theta$	(B) $\tan \theta$	(C) -cot θ	(D) $-\tan \theta$
16) Domain of y =			
(A) IR	(B) [-1, 1]	(C) $\left[\frac{-\pi}{2}, \frac{\pi}{2}\right]$	(D) Q
17) In any triangle	ABC, with usual notation b^2	$+c^2-2bc\cos\alpha=$	
(A) Δ	(B) 0	(C) a ²	(D) 1
$18) \sqrt{\frac{s(s-a)}{bc}} =$		113	
(A) $\sin \frac{\alpha}{2}$	(B) $\sin \frac{\beta}{2}$	(C) $\cos \alpha/2$	(D) $\cos \frac{\beta}{2}$
19) tan (tan-1(1)) =			
(A) I	(B) $\frac{\pi}{4}$	(C) $\frac{\pi}{3}$	(D) 0
20) Solution of cot 8	$\theta = \frac{1}{\sqrt{3}}$ in IIIrd quadrant is		
$\cdot \text{ (A) } \frac{5\pi}{4}$	(B) $\frac{7\pi}{4}$	(C) $\frac{4\pi}{3}$	(D) π
	1133 1119		

.

2. Answer briefly any Eight parts from the followings:-

 $8 \times 2 = 16$

- (i) Check the closure property w.r.t "x" on {-1,1} (ii) Define modulus of a complex number.
- (iii) Find multiplicative inverse of -3-5i
- (iv) Write down power set of {a, {b,c}}
- (v) Construct truth table for an implication.
- (vi) Define Semigroup.

(vii) Find
$$x \& y$$
 if $\begin{bmatrix} 2 & 0 & x \\ 1 & y & 3 \end{bmatrix} + 2 \begin{bmatrix} 1 & x & y \\ 0 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 4 & -2 & 3 \\ 1 & 6 & 1 \end{bmatrix}$ (viii) Find A^{-1} if $A = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$

- (ix) If A is a non-singular matrix, then show that $(A^{-1})^{-1} = A$
- (x) Solve $2x^2 + 12x 110 = 0$
- (xi) If ω is cube root of unity and $\omega^3 = 1$, then evaluate $\omega^{28} + \omega^{29} + 1$
- (xii) Discuss the nature of roots of $25x^2 30x + 9 = 0$

3. Answer briefly any Eight parts from the followings:-

 $8 \times 2 = 16$

- Define Improper rational fraction and give one example.
- (ii) Resolve $\frac{1}{x^2-1}$ into partial fractions.
- (iii) Convert an improper fraction $\frac{2x^3 + x^2 x 3}{x(2x + 3)(x 1)}$ into mixed form.
- (iv) Sum the series $1.11 + 1.41 + 1.71 + \dots + a_{10}$
- (v) Define a geometric sequence and give an example.
- (vi) Insert one real geometric mean between -2i and 8i
- (vii) Find the sum of infinite geometric series $4+2\sqrt{2}+2+\sqrt{2}+1+\dots$

(viii) If
$$\frac{1}{k}$$
, $\frac{1}{2k+1}$, $\frac{1}{4k-1}$ are in harmonic sequence, find k

- (ix) In how many ways the necklaces from 6 beads of different colours can be made.
- (x) If $1+2+4+\dots+2^{n-1}=2^n-1$ then check the statement for n=2 and n=3 is either true or false.
- (xi) Evaluate (9.9)5 using binomial theorem upto two decimal places.
- (xii) Expand $(1+x)^{-1/2}$ upto 4 terms.

1134 -- 1119 -- 26000 P.T.O

Answer briefly any Nine parts from the followings:-

 $9 \times 2 = 18$

- (i) Define "right angled triangle".
- (ii) What is the length of the arc intercepted on a circle of radius 14 cms by the arms of a central angle of 45°?
- (iii) Find the values of $\sin \theta$ and $\cos \theta$ when $\tan \theta = -\frac{1}{3}$ and the terminal arm of the angle is in quad ii.
- (iv) Prove that: $\cos 306^{\circ} + \cos 234^{\circ} + \cos 162^{\circ} + \cos 18^{\circ} = 0$ without using calculator
- (v) Prove that : $\sin(45^\circ + \alpha) = \frac{1}{\sqrt{2}} (\sin \alpha + \cos \alpha)$ (vi) Prove the identity $\frac{\sin \alpha \sin \beta}{\sin \alpha + \sin \beta} = \tan \frac{\alpha \beta}{2} \tan \frac{\alpha + \beta}{2}$
- (vii) Find the period of $\cos \frac{x}{6}$ (viii) State 'The Law of Sines'.
- (ix) Find the area of the triangle ABC when its sides are a = 18, b = 24, c = 30
- (x) Show that $\sin^{-1}(-x) = -\sin^{-1} x$ (xi) Find the solutions of the equation $\cot \theta = \frac{1}{\sqrt{3}}$, θ lies in $[0, 2\pi]$
- (xii) Solve the equation $\sec^2 \theta = \frac{4}{3}$, $\theta \in [0, 2\pi]$
- (xiii) When the angle between the ground and the sun is 30°, flag pole casts a shadow of 40 m long. Find the height of the top of the flag.

 Section ------II

Note: Attempt any three questions.

 $(10 \times 3 = 30)$

- 5. (a) Show that the set $\{1, \omega, \omega^2\}$, When $\omega^3 = 1$, is an abelian group w.r.t. ordinary multiplication.
 - (b) If $3n^2 + 2n + 1$ be nth term of the series, find the sum to 2n terms.
- 6. (a) Show that $\begin{vmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix} = (x+3)(x-1)^3$
 - (b) Find values of n and r when ${}^{n-1}C_{r-1} {}^{n}C_{r} {}^{n+1}C_{r+1} = 3:6:11$
- 7. (a) Solve the equation $\left(x \frac{1}{x}\right)^2 + 3\left(x + \frac{1}{x}\right) = 0$
 - (b) Find the coefficient of x^3 in the expenssion of $\left(x^2 \frac{3}{2x}\right)^{10}$
- 8. (a) Prove the identity $\frac{1}{1+\sin\theta} + \frac{1}{1-\sin\theta} = 2\sec^2\theta$
 - (b) If α, β, γ are the angles of the triangle ABC, show that $\cot \frac{\alpha}{2} + \cot \frac{\beta}{2} + \cot \frac{\gamma}{2} = \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$
- 9 (a) Prove that $r = \frac{\Delta}{s}$ with usual notation (b) Show that $\tan(\sin^{-1} x) = \frac{x}{\sqrt{1-x^2}}$

1134 -- 1119 -- 26000