1121		ing:- Please writer Part – I)	e your Roll No. in (Session 201)	the space 7-19 to 20	e provid (20-22)	ed and si			No nt
Chemi	istry	(Objective)	(G	roup - II)540.	42-21	Paper	(I)	
Time A	Allowe	ed:- 20 minutes	PAPER	CODE	248	В	Maxin	num	Marks:- 17
Note:- that circ result in Answer	You hat le in fro zero m Sheet a	ve four choices for ont of that question ark in that question.	number. Use marker Write PAPER COD ordingly, otherwise the	r or pen to E, which is	fill the ci	ircles. Cutt on this qu	ing or file	lling t aper,	you think is correct; fill we or more circles will on the both sides of the Use of Ink Remover or Q. 1
	If the	salt bridge is not	used between two	half cell	s, then t	he voltag	e		
	(A) D	Decrease rapidly	(B) Decrease s	lowly	(C) Do	es not ch	ange	(D)	Drops to zero
2)	If the	rate equation of	a reaction 2A + B	\longrightarrow pr	roducts	is, rate =	$k[A]^2[E$	3] an	d A is present in
,	large	e excess, then ord	ler of reaction is						
	(A) 1		(B) 2		(C) 3			(D)	1.5
3)	The ar	ngle between sides	'b' and 'c' is					~	C
	(A) B		(B) Alpha		(C) The	eta		(D)	Gamma
	(A) P	pes differ in Properties which depend upon mass	electrons in	orbitals	pro	perties			The extent to which the may be affected in electromagnetic field
5)			in 1.79 g of gold a	nd	g of s	sodium a	re equal	(D)	2200
-	(A) 0	0.023	(B) 23		(C) 230				2300
6)	(A) I	comparative rates R_f values of olutes	at which the solut (B) The size of		(C) Ten	nperature eriment	of the	(D)	Size of the chromatograph tank used
7)			ane and oxygen are	mived it	an emi	nty conta	iner at	25°C	The fraction of
1)	-			c mixed i	i dii cinj	pty conta	inci at 2		, The hadden of
		pressure exerted	_	15	1				0./
	A) $\frac{1}{3}$		(B) $\frac{2}{3}$		(C) $\frac{1}{9}$			(D)	8/9
	$(A)_1$	27°C and 1 atm	CO_2 is maximum a $(B) \ 0 {}^{\circ}C$ and $2 a$	atm	(C) S.T	.P		(D)	273 °C and 2 atm
9)			present in ammoni (B) Ion-dipole for			ole-induc		' '	London-dispersion forces
10	Ouan	tam number valu	es for '3d' orbitals	will be	-				
	-	=3, \(= 0 \)	(B) $n=3$, $\ell=1$		(C) $n=3$	$\ell = 2$		(D)	$n=3$, $\ell=3$
11)		als having same							
ĺ	(A) V	alence orbitals	(B) Hybrid orbi		(C) d-o	rbitals		(D)	Degenerate orbitals
	(A) T	wo	(B) One		(C) Zer	0		(D)	Three
13)	Beryl	liumdichloride fo	ollows hy $(B) sp^3$	bridizatio	n				2.2
	(A) s	p	(B) sp^3		(C) sp ²			(D)	sp^3d^2
			is the application						
	(A) H	less's	(B) Le-chatlier m ⁻³ of an aqueous		(C) Cou	llomb		(D)	Pascal
15)	The p (A) 3	oH of 0.001 mold	m ⁻³ of an aqueous (B) 2.7 ad is maintained at	solution o	of H ₂ SO (C) 2.0	4 is		(D)	1.5
16)	The p	H of human bloo	d is maintained at	<u> </u>	(0) = 5	2		(T)	0.00
	(A) 7		(B) 7.35 🔹		(C) 1.93			(D)	8.00
17)			nt constant is the ra	tio of the	elevatio	on in boil	ing poir	(D)	Mala fraction of
	(A) N	1olarity	(B) Molality		(C) Mol solv	ent			Mole fraction of solute
			1103			11	1		

1193-- 1121 ALP -- 12000 (4)

	Che	mistry (Subjective) (Session 2017-19 to 2020-22) Group (II)	Paper (I)					
	Time	e Allowed: 2.40 hours SectionI	Maximum Marks: 68					
2.	Ans	wer briefly any Eight parts from the followings:- 540-62-21	$8 \times 2 = 16$					
(i)	Justi	fy that 180 g of glucose and 342 g of sucrose have the same number of	molecules but different					
(-)		ber of atoms present in them. (ii) Define isotopes. Give one example of atoms present in them.	nple.					
(iii)	Wha	t is gram atom? How we can calculate gram atom of an element? Give	its relationship.					
(iv)	What	t is chromatography? Write its two uses. (v) Define sublimation. Write two solid	is which can be sublimed.					
(vi)		erentiate between natural and artificial Plasma.						
(vii)	Derive	e the units for gas constant R in general gas equation when the pressure is in atmosp	here and volume in dm3.					
(viii)		fy Boyle's law from kinetic theory of gases.						
(ix)	Write two applications of Dalton's law of partial pressure.							
(x)	Define solubility. How it can be expressed? (xi) What is discontineous solubility curve. Give one example.							
(xii)	How do you Justify that freezing points are depressed due to the presence of solutes.							
3.	Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$							
(i)	Why in a very cold winter the fish in gardens ponds owe their lives to hydrogen bonding?							
(ii)	Why water and ethanol can mix easily and in all proportions.							
(iii)	Define unit cell. Give one example. (iv) Define transition temperature. Give one example.							
(v)	What is hydrogen spectrum. Name four spectral lines.							
(vi)	Writ	e down two defects in Bohr's atomic model.						
(vii)	Whichever gas is used in discharge tube, the nature of the cathode rays remains the same. Why?							
(viii)	Give any two properties of cathode rays. (ix) Define (a) Reversible reactions (b) state of equilibrium.							
(x)	Define Buffer capacity. (xi) Define instantaneous and average rates of reaction							
(xii)	Defi	ne specific rate constant or velocity constant.						
4.	Ans	wer briefly any Six parts from the followings:-	$6 \times 2 = 12$					
(i)	Diffe	erentiate between polar and non polar covalent bond.						
(ii)	Explain the formation of co-ordinate covalent bond between NH ₃ & BF ₃							
(iii)	Explain the geometry of H ₂ S molecule on the basis of VSEPR theory.							
(iv)	How ionization energy varies in the periodic table.							
(v)	Define standard enthalpy of formation with two examples.							
(vi)	Differentiate between atomization energy and Lattice energy.							
(vii)	How	electrochemical series helps to predict the feasibility of a chemical reaction	on? Give an example.					
(viii)	Write the function of salt bridge in Galvanic cell.							
(ix)	Differentiate between Galvanic cell and electrolytic cell.							
` '		Section II						
Note:	Atte	mpt any three questions.	$(8\times3=24)$					
5.	(a)	Calculate the number of grams of K ₂ SO ₄ and water produced when 14	gram of KOH are					
		reacted with excess of H ₂ SO ₄ , Also calculate the number of molecules	of water produced.					
	(b)	How does hydrogen bonding explains the following						
	, ,	(i) Structure of DNA (ii) Structure of Ice.						
6.	(a)	Write down the postulates of Kinetic molecular theory of gases.						
	(b)	Explain Millikan's oil drop experiment to determine the charge of an	electron.					
7.	(a)	Draw and discuss the geometry of Ethylene with respect to sp ² -hybrid	ization.					
	(b)	How can you measure enthalpy of reaction by glass calorimetric meth	od.					
8.	(a)	The following reaction was allowed to reach the state of equilibrium	. 1					
		$2A_{(ac)} + B_{(ac)} \longrightarrow C_{(ac)}$ the initial amount of the reactants present in one dm ² of solution						
		were 0.50 moles of A and 0.60 moles of B. At equilibrium the amounts were 0.20 moles of A						
		and 0.45 moles of B and 0.15 moles of C. Calculate the equilibrium co	onstant K _c .					
	(b)	Define half life period. Explain with two examples.						
9.	(a)	Give differences between Ideal and Non-Ideal solution.	•					
	(b)	Write different rules for assigning oxidation number by giving one exa	ample.					

1194-1121 ALP -- 12000

1121 (Inter Part - I) Warning:- Please, do not write anything on this question paper except your Roll No.

Jeri Jerie