Roll No. of Can	didate	•		14
PHYSICS	Intermediate	Part-I, Class 11th	(1 st A 324- IV)	Paper: I Group - I
Time: 20 Minu	tes OBJEC	CTIVE Co	de: 6477 GVJ	-1-14 Marks: 17
fill that circ	our choices for each objective tele in front of that question nur I result in zero mark in that of	e type question as A, B mber. Use marker or pe	B, C and D. The choice	ce which you think is correct
acceler	mass is placed on the floor ation, the reaction of floor	on the mass is		1
(A) 9.8 2 - Which	. ,		4.9 N	(D)/14.7 N
	pair of angles gives same ra			
(A) (20	. , , , , ,	, ,	(30°, 60°)	$(D) (30^{\circ}, 70^{\circ})$
(A) 90°	cular motion with constant s with each other with each other	(B)	at 120° with each other 30° with each other	
(A) in i (B) in r (C) in r	of the following is correct rreversible process entropy eversible process entropy in eversible process entropy re- rreversible process entropy	remains constant ncreases emains constant		
	rve one hundred fringes in		ometer the distance	e travelled by moveable
mirror v	vill be minimum in case of	light.	January, une distance	duvened by movedore
(A) Rec			Blue	(D) Yellow
6 - A body	in SHM with amplitude xo	goes from mean posi	ition to $\frac{x_0}{2}$. Its pha	se is
(A) 30°	(B) 45°	(0)	2	(D) 90°
7 - $\hat{i} \cdot (\hat{j} \times \hat{k})$	=			
(A) 0	(B) 1	(0)	î	(D) i
8 Two ma	sses 2 Kg and 3 Kg are mo	ving towards each of	her with velocity 3	
moment	um of the system is		in with volocity 5	mbs and 2 m/s. The total
(A) 12 N	Vs (B) 0 Ns	(C) 1	.3 Ns	(D) -12 Ns
	a highly concentrated form			
(A) Mor		a (C) I	Energy	(D) Acceleration
	ometer is not used to	(D)		
	y spectrum of light y polarization of light			ndex of material of prism
	ency of stationary waves are	increased to higher	neasure wavelength	or right
(A) spee	d (B) wavele			(D) density of string
	renewable source of energ		ansion in the string	(D) density of string
(A) Bior		(C) C	Dil	(D) Uranium
(A) 32 j	ransferred slowly to a gas in of 8000Nm ⁻² . If cross-section (B) 64 j	n a cylinder, the pisto ional area of the pisto (C) 1	on is pushed up throon is $0.10 \mathrm{m}^2$, work 6 j	ough 4.0 cm at constant
14 - The com	plete requirement for a bod			
$(A) \sum \vec{F} =$, A	(C) ∑τ =	=0 (D)	$\sum \vec{F} = 0$ and $\sum \tau = 0$
(A) 370	centage uncertainty in the i	(C) 99	%	e uncertainty in its area is (D) 4%
16 - Two poin	nts in a wave $\frac{\lambda}{4}$ distance ap	art have phase differ	ence	
(A) #	(B) $\pi/2$	(C) π/		(D) 2π
17 - Bernoull	's equation relates to	(=) 10		(2) 200
(A) press	ure, speed and height, speed and pressure		essure, force and horce, height and spe	

PHYSICS

Intermediate Part-I, Class 11th (1st A 324) Paper: I Group - I

Time: 2:40 Hours

SUBJECTIVE

GNJ-1-24

Marks: 68

Note: Section I is compulsory. Attempt any THREE (3) questions from Section II.

SECTION-I

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. What are significant figures? What is rule when first digit dropped is less than 5 while rounding off the data?
- ii. What is absolute uncertainty? What is its value?
- iii. Why do we find it useful to have two units for the amount of substance, the kilogram and the mole?
- iv. Give the drawbacks to use the period of a pendulum as a time standard?
- v. Can a vector have a component greater than the vector's magnitude? Explain.
- vi. If $\vec{A} + \vec{B} = \vec{O}$, what can you say about the components of the two vectors?
- vii. What is position vector? Explain briefly.
- viii. Discuss and draw the velocity time graph when car moves with constant acceleration?
- ix. Explain the circumstances in which velocity \vec{v} and acceleration \vec{a} are
 - (i) perpendicular to each other
- (ii) anti-parallel
- x. What will happen when a light body collides with a massive body at rest in an elastic collision?
- xi. A 70 kg man runs up a long flight of stairs in 4.0 s. The vertical height of the stairs is 10 m. Calculate his power output in watts.
- xii. Calculate the work done in kilo joules in lifting a mass of 10 kg (at a steady velocity) through a vertical height of 10 m.

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. If a lift is falling freely under gravity, how weightlessness is produced. Use mathematical equations to support your answer.
- ii. How do you create a gravity free system?
- iii. What is meant by centripetal force and why it must be furnished to an object, if the object is to follow a circular path?
- iv. What is meant by moment of inertia with its physical significance? Use equations to support your answer.
- v. How Bernoulli's equation is reduced? When
 - a) height difference is negligible
- b) velocity is constant.
- vi. What do you understand by the term viscosity? Also give its unit.
- vii. Define damping process. Use a graph to support your answer.
- viii. If a mass spring system is hung vertically and set into oscillations, why does the motion eventually stop?
- ix. Explain the relation between total energy, potential energy and kinetic energy of a body oscillating with S.H.M
- x. How Doppler Effect is used to monitor blood flow? Use diagrammatic explanation to support your answer.
- xi. Explain why sound travels faster in warm air than in cold air?
- xii. How are beats useful in tuning musical instrument?

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. Under what conditions two or more sources of light behave as coherent sources?
- ii. What are the conditions for detectable interference?
- iii. 10000 lines per centimeter has been ruled on diffraction grating. Find its grating element.
- iv. Why would it be advantageous to use blue light with a compound microscope?
- v. Why is meant by "least distance of distinct vision"?

4

- vi. Find magnifying power of convex lens of 25 cm focal length acts as a magnifying glass.
- vii. Does entropy of a system increase or decrease due to friction?
- viii. Is it possible to construct a heat engine that will not expel heat into the atmosphere?
- ix. Derive Charles' law from Kinetic theory of gases

SECTION - II

- 5. (a) Does the inertia depend on the momentum of a body? Give its reason. Also state and explain the law of conservation of linear momentum.
 - (b) Show that the three vectors $\hat{i} + \hat{j} + \hat{k}$, $2\hat{i} 3\hat{j} + \hat{k}$ and $4\hat{i} + \hat{j} 5\hat{k}$ are mutually perpendicular.
- 6. (a) Stationary waves are also called standing waves, why? Discuss stationary waves in air column of an open organ pipe.

 (5)

 (6)

 (7)
 - (b) How large a force is required to accelerate an electron (m = 9.1 x 10⁻³¹kg) from rest to a speed of 2 x 10⁷ms⁻¹ through a distance of 5cm?
- 7. (a) How does a space satellite acquire an artificial gravity?
 - (a) How does a space satellite acquire an attributa gravity.

 (b) A block weighing 4.0 Kg extends a spring by 0.16 m from its unstretched position. If the block is removed and 0.50 kg body is hung from same spring, now what is its period of vibration?
- 8. (a) Explain four stroke petrol engine in detail. What is the efficiency of a diesel engine? (5)
 - (b) Water flows through a hose, whose internal diameter is 1cm at a speed of 1 ms⁻¹. What should be the diameter of the nozzle if the water is to emerge at 21ms⁻¹?
- 9. (a) What is meant by diffraction of light? Also discuss the diffraction of light through a narrow slit. (5)
 - (a) what is meant by diffraction of light? Also discuss the state of two thin lenses 24 cm

 (b) An astronomical telescope having magnifying power of 5 consists of two thin lenses 24 cm

 apart. Find the focal lengths of the lenses.

215-1st A 324-46000