× , ,	, , , (N.		4	* * * * * * * * * * * * * * * * * * *		*
	D 11		CO L'Ista	GUT	-4-21		
î	PHY	SIC	of Candidate : CS Minutes	(INTERMEDIATE		Paper-I Group 71 Marks:	
•		You fill to	have four choices for	r each objective type quest that question number. Use mark in that question. A	ion as A, B, C and D. The marker or pen to fill the c	e choice which you think is co ircles. Cutting or filling two or is as given in objective type que	rrect, more
1	1.	1.	Which of the follow			2	
			(A) $f = V\lambda$	(B) $f = \frac{V}{\lambda}$	(C) $f = \frac{1}{V\lambda}$	(D) $f = \frac{\lambda}{V}$	
		2.	The SI unit of co-6 (A) kg m s	efficient of viscosity is (B) kg m ⁻¹ s	(C) kg m ⁻¹ s ⁻¹	(D) kg m s ⁻¹	
,		3.	$\overline{A} \times \overline{A} =$	2	-	(D) 0	
		4.	(A) $2\overline{A}$ The direction of a of the vector make	(B) A ² vector in a plane is denote s with	ed by the angle which the	(D) 0 e representative line	•
		,	(A) positive x-ax	is in the anti-clock wise d	irection		
*			(C) negative x-ax	is in the clock wise direct is in the anti-clock wise on its in the clock wise direct	lirection	CO.	
		5.	If mass m of the w	rater strikes the wall in tin	ne 't' then force F on th	e wall is	
		\	(A) $F = \frac{mv}{t}$	(B) $F = \frac{mt}{v}$	(C) $F = \frac{vt}{m}$	(D) $F = \frac{m}{vt}$	
		6.	(A) 100 kg s ⁻¹	onsumes fuel about (B) 1000 kg s	(C) 10000 kg s	(D) 100000 kg s ⁻¹	1
		7.	The value of escap (A) Moon	be velocity is maximum for (B) Earth	(C) Jupiter	(D) Mercury	5
		8.	The moment of inc	ertia for a cylinder is		, 1	1
			(A) mr ²	$V_{\rm (B)} \frac{1}{2} {\rm mr}^2$	(C) $\frac{2}{5}$ mr ²	(D) $\frac{1}{12}$ mr ²	4.8
		9.	The rotational K.E	E. of a disc is	, V 1	2 (D) K.F. 2/2	(M)
		10		v^2 (B) K. $E_{rot} = \frac{1}{2}$ quation is for a fluid which		$mv^2 (D) K.E_{rot} = 2mv^2$	1
		10.	(A) viscous	(B) compressible	e (C) inturbulen	t flow (D) in steady flow	W.
;		11.		ven, the waves produced l	have a wavelength of (C) 14 cm	(D) 16 cm	Pto
		12.	(A) 10 cm	(B) 12 cm	f the difference between		
			of the two sounds	is more than about	(C) 4 Hz	(D) 10 Hz	1
		13.	WA) 30 Hz	(B) 60 Hz	quency of 120 Hz, its fu (C) 120 Hz	ndamental frequency will be (D) 480 Hz	Life
		14.	The distance betw	veen two adjacent dark fri	nges is equal to	d	
			(A) $\frac{\lambda L}{d}$	(B) $\frac{\lambda d}{L}$	(C) $\frac{dL}{\lambda}$	(D) $\frac{d}{L\lambda}$	
		15.		d to determine the speed of	of fight by Whenelson is	(D) $c = \frac{16}{61}$	
		16	(A) c = 8fd	(B) $c = 16fd$ of gases, the gas molecu	(C) $c = \frac{8}{fd}$	(b) $c = \frac{1}{fd}$	
		16.	(A) angular mot	ion (B) circular me	otion (C) random m		
	-	17.	The conversion o	f available heat energy in	to work by a petrol engi	ne is about 25%	
	1		√(A) 10%	(B) 15%	(c) 20%	214-(I)-321-450	000

VŜICS

407-41-21 (INTERMEDIATE PART - I) 321

Paper-I Group-I

Time: 2:40 Hours

SUBJECTIVE

Marks: 68

Note: Section I is compulsory. Attempt any THREE (3) questions from Section II.

(SECTION - I)

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. Calculate the dimension of physical quantities, if possible, 2π and rupees hundred.
- ii. Add the following masses given in kg upto appropriate precision 2.189, 0.089, 11.8 and 5.32.
- iii. State the principle of homogeneity of physical quantities equation.
- iv. What are the dimensions and units of gravitational constant G in the formula $F = \frac{G m_1 m_2}{r^2}$?
- v. Find the dot product of two vectors, if $\vec{A} = 3\hat{K}$ and $\vec{B} = -5\hat{j}$.
- vi. Write down the five steps to find addition of vectors by rectangular components.
- vii. Suppose the sides of a closed polygon represent vectors arranged by head-to-tail rule.

 What is the sum of these vectors?
- viii. Add a vector $\vec{A} = 2\hat{i} + 3\hat{j}$ and thirty chairs.
- ix. When two identical masses collide with each other in elastic collision. What will be the velocities after collision?
- x. Is momentum is conserved in an inelastic collision? Explain the reason.
- xi. How the hair acts like a crumple zone on your skull?
- xii. Is law of conservation of momentum is valid in an inelastic collision?

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. An object has one J of potential energy. Explain what does it mean?
- ii. Calculate the work done in kilo joules in lifting a mass of 10 kg through a vertical height of 10 m.
- iii. State law of conservation of energy.
- iv. Define escape velocity. Give its units.
- v. State law of conservation of angular momentum. Also define isolated system.
- vi. State the direction of following in simple situation, angular momentum, angular velocity.
- vii. Is it possible for two identical waves travelling in same direction along a string to give rise to a stationary wave?
- viii. How are beats useful in tuning musical instruments?
- ix. What is relation between total energy, potential energy and kinetic energy of a body executing SHM?
- x. What is meant by phase angle; does it define angle between maximum displacement and driving force?
- xi. Describe some common phenomena in which resonance plays an important role.
- xii. Define free and forced oscillations.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. How would you get more orders of spectra using a diffraction grating?
- ii. Could you obtain Newton's rings with transmitted light? If yes, would the pattern be different from that obtained with reflected light?
- iii. Define diffraction grating. Write the formula for grating element.
- iv. Why would it be advantageous to use blue light with compound microscope?

(Turn Over)

- ٧. Define isothermal process and adiabatic process.
- vi. Differentiate between reversible and irreversible processes.
- Is it possible to construct a heat engine that will not expel heat into the atmosphere? vii.
- viii. Briefly explain total internal reflection.
- Derive Boyles law from kinetic molecular theory of gases. ix.

(SECTION - II)

- 5. (a) Define elastic collision. Show that relative speed of approach is equal to relative speed 5 of separation for one dimensional collision. (b) The magnitude of dot and cross product of two vectors are $6\sqrt{3}$ and 6 respectively. 3 Find the angle between the vectors. (a) Define stationary waves. Show that frequencies of stationary waves in a stretched string 1+4: are quantized. (b) A car of mass 800 kg travelling at 54 km h⁻¹ is brought to rest in 60 metres. Find the average 3 retarding force on the car. 7. (a) Define moment of inertia. Give its unit and dimension. Derive its relation for a rigid body. 5 (b) Certain globular protein particle has a density of 1246 kg m⁻³. It falls through pure water
- 8. (a) What is SHM? Derive a relation for instantaneous velocity and acceleration in terms of ω in SHM and uniform circular motion.

 $(\eta = 8.0 \times 10^{-4} \text{ kg m}^{-1} \text{ s}^{-1})$ with a terminal speed 3.0 cm h⁻¹. Find radius of the particle.

- (b) A thermodynamic system under goes a process in which its internal energy decreases by 300 J. If at the same time 120 J of work is done on the system. Find the heat lost by the system.
- 9. (a) What is a simple microscope? Calculate its magnifying power.
 - (b) A second order spectrum is formed at an angle of 38° when light falls normally on a diffraction 3 grating having 5400 lines per centimetre. Determine wavelength of the light used.

214-321-45000

3

5