MATI	HEMATICS	Intermediate Part-I, Cl	non 11th cast	
Time:	30 Minutes	OBJECT	TIVE a	
Note:	You have four choice	Code: 6	. 01/	Marks: 20 The choice which you think is
	correct, fill that circ	le in front of that question nu	mber. Use marker or pe	. The choice which you think is en to fill the circles. Cutting or
1- 1-	The multiplicativ	circles will result in zero mar e inverse of complex numb	k in that question.	Cutting of
	(A) $(0,-1)$	(B) (-1,0)	(C) (1,0)	(D) (1 1)
2-	Converse of $p \rightarrow$		(0) (1,0)	(D) (1,1)
	$(A) \sim p \to q$	• (B) $p \rightarrow \sim q$	$\bigcirc q \rightarrow p$	(D) $\sim q \rightarrow p$
3-	$(A^{-1})^t =$			(2) q · p
	(A) A	$(B) -A^{t}$	(C) A ⁻¹ A ^t	(At-1
4-	The trivial solution	n of the system $a_1x + b_1y =$		$(A^t)^{-1}$
5-	(A) (1,0)	(B) (0,1)	(0,0)	
	Sum of all four for	orth roots of unity is	(0,0)	(D) (1,1)
	(A) 1	(B) -1	© 0	(D) <i>i</i>
6-	Roots of the equati	on $ax^2 + bx + c = 0$ are real	and distinct if	(- <i>/</i> ·
	(A) $b^2 - 4ac = 0$	(B) $b^2 - 4ac > 0$	(C) $b^2 - 4ac < 0$	(D) $a^2 - 4ac > 0$
7-	A relation in which	the equality is true for any		s called
	(A) identity	(B) equation	(C) fraction	(D) conditional
8-	The sequence 3, 6,			
0	(A) A.P.	(B) G.P.	(C) H.P.	(D) infinite
9-	Harmonic mean bet			
	(A) $\frac{3}{21}$	B $\frac{21}{5}$	(C) 5	(D) 21
10-	Factorial form of $n(n-1)(n-2) =$			
	(A) $\frac{n!}{(n-1)!}$	(B) $\frac{n!}{(n-2)!}$	(C) n!	m nl
		,	(n-3)!	(D) $\frac{n!}{(n+3)!}$
11-	If A and B are indep	endent events and P(A) =	0.8, $P(B) = 0.7$ then I	$P(A \cap B) =$
	(A) 0.56	(B) $\frac{8}{7}$	(C) 7/8	(D) 0.1
12-	The			
	(A) 1	ts of a and b in every term		$(a+b)^n$ is
	•	(B) 0	(C) 2n	(D) n
13-	The expansion of (1-	$+2x)^{-3}$ is valid only if		
	(A) x <2	$ \mathbf{B} \times \mathbf{x} < \frac{1}{2}$	(C) $ x < \frac{1}{3}$	(D) $ x < \frac{1}{\epsilon}$
4-	If length of arc and ra	adius of circle are measure		0
	(A) degree	(B) radians	(C) cm ²	(D) cm
15-	Cos 2α =			(D) CIII
	(A) $2\cos^2\alpha + 1$	B 2Cos ² aZ1	(C) $2\sin^2\alpha - 1$	(D) $2\sin^2\alpha + 1$
		L (W)		
) ((2)	40/-11	-1-25
		e number P for which f(x		
16-		e number r for winch r(x	(C) range	period
	(A) domain	(B) co-domain	(-)	
17-	In any triangle ABC	$c, c^2 = $	(B) $a^2 + b^2 - 2a$	bCosγ
	(A) $a^2 + c^2 - 2ac \cos \beta$		(D) $a^2 + b^2 - 2ab \cos \alpha$	
	(C) $h^2 + c^2 - 2bc \cos \alpha$			
18-	Point of intersection of the angle bisectors of		a triangle is called	(D) ortho-centre
	(A) circum-centre		(C) ex-centre	(2)
10	$2Tan^{-1}A = .$	9990		
19-		_1. 2A	(C) Tan-1 2A	$\left(\frac{A}{A^2}\right)$ (D) $\operatorname{Tan}^{-1}\left(\frac{2A}{2-A^2}\right)$
	(A) $Tan^{-1}\frac{A}{1-A^2}$	(B) $Tan^{-1} \frac{2A}{1+A^2}$	1-1	$(2-A^2)$
20-	If $Sinx + Cosx = 0$		π 3π	(D) $\frac{\pi}{4}, \frac{3\pi}{4}$
	$(\Delta) \frac{\pi}{\pi} - \frac{\pi}{\pi}$	(B) $-\frac{\pi}{4}, -\frac{\pi}{2}$	(C)/,-	(D) 4, 4

ATHEMATICS

Intermediate Part-I, Class 11th (1st A 323)

PAPER: I

GROUP - I Marks: 80

Note: Section-I is compulsory. Attempt any three (3) questions from Section-II. SECTION-I

Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

- i- Check the closure property with respect to multiplication on the set {-1, 1}
- ii- Simplify the complex numbers (5, -4)(-3, -2)
- iii- Write down the descriptive and tabular form of $\{x \mid x \in P \land x < 12\}$
- iv- Verify commutative property of union and intersection for sets $A = \{1,2,3,4,5\}$, $B = \{4,6,8,10\}$
- v- Write down the inverse and contrapositive of the conditional $\sim p \rightarrow q$

vi- Find x and y if
$$\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$$

- vii- If A and B are non-singular matrices. Then show that $(AB)^{-1} = B^{-1}A^{-1}$
- viii- Without expansion show that $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix} = 0$
- ix- Solve the equation $x^2 7x + 10 = 0$ by factorization.
- x- Reduce $2x^4 3x^3 x^2 3x + 2 = 0$ into quadratic form.
- xi- Solve the equation $x^{1/2} x^{1/4} 6 = 0$
- xii- Define reciprocal equation.

Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

- i- Resolve into partial fractions of $\frac{x^2+1}{(x-1)(x+1)}$ without finding values of constants.
- ii- Write down next two terms of sequence -1, 2, 12, 40,
- iii- Insert two G.Ms. between 1 and 8
- iv- Find nth term of $\frac{1}{2}$, $\frac{1}{5}$, $\frac{1}{8}$,
- v- Prove that $\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$
- vi- If 5, 8 are two A.Ms. between a and b. Find a and b.
- vii- Find the value of n^{-1} when ${}^{n}P_{4}$: ${}^{n-1}P_{3} = 9:1$
- viii- How many arrangements of letters of word PAKPATTAN, taken all together, can be made?
- ix- Two dice are thrown twice. What is probability that sum of dots shown in first throw is 7 and that of second throw is 11?
- x- Show that in-equality $4^n > 3^n + 4$ holds for n = 2, n = 3
- xi- Using binomial theorem, expand (a +2b)5
- xii- Expand up to 4 terms, taking the value of x such that expansion is valid: (8-2x)-1

4. Write short answers to any NINE questions:

 $(2 \times 9 = 18)$

- i- What is the length of the arc intercepted on a circle of radius 14cm by the arms of central angle of 45°?
- ii- Verify that $\sin^2 \frac{\pi}{6} : \sin^2 \frac{\pi}{4} : \sin^2 \frac{\pi}{3} : \sin^2 \frac{\pi}{2} = 1 : 2 : 3 : 4$
- iii- Prove that $\frac{\sin \theta}{1 + \cos \theta} + \cot \theta = \csc \theta$
- iv- Without using table, find the value of tan(-135°)

6

(Turn Over)

- vi- Prove that $\frac{1-\cos\alpha}{\sin\alpha} = \tan\frac{\alpha}{2}$
- Find the period of Cot 8x
- When the angle between the ground and the sun in 30° , flag pole casts a shadow of $40\,\mathrm{m}$ long. viii-Find the height of the top of the flag.
- Find the smallest angle of the triangle ABC when $a=37.34\,$, $b=3.24\,$, $c=35.06\,$ ix-
- Find the area of the triangle ABC when $a=200\,$, $\,b=120\,$, $\,\gamma=150^o$
- Show that $Sin(2Cos^{-1}x) = 2x\sqrt{1-x^2}$
- Find the solution set of Sinx.Cosx = $\frac{\sqrt{3}}{4}$
- Find the solution of Sinx = $\frac{1}{2}$ in $[0, 2\pi]$

SECTION-II

Note: Attempt any three (3) questions.

(a) Use matrices to solve the system of equations $2x_1 + x_2 + 3x_3 = 3$

$$x_1 + x_2 - 2x_3 = 0$$

$$-3x_1 - x_2 + 2x_3 = -4$$

- (b) Solve the equation $\left(x \frac{1}{x}\right)^2 + 3\left(x + \frac{1}{x}\right) = 0$
- (a) Resolve $\frac{x^2+1}{x^3+1}$ into partial fraction.
 - (b) A die is thrown. Find the probability that the dots on the top are prime numbers or odd numbers.
- 7- (a) For what value of n, $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is the positive geometric mean between a and b?
 - If $y = \frac{2}{5} + \frac{1 \cdot 3}{2!} \left(\frac{2}{5}\right)^2 + \frac{1 \cdot 3 \cdot 5}{3!} \left(\frac{2}{5}\right)^3 + \dots$ then prove that $y^2 + 2y 4 = 0$
- Prove that $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta \tan\theta$, where θ is not an odd multiple of $\frac{\pi}{2}$ 5
 - (b) If $-\alpha + \beta + \gamma = 180^{\circ}$, show that $\cot \alpha \cot \beta + \cot \beta \cot \gamma + \cot \gamma \cot \alpha = 1$
- 5 Using law of tangents , solve the $\triangle ABC$ in which a = 36.21 , b = 42.09 and $\gamma = 44^{\circ}29^{\circ}$ 5
 - **(b)** Prove that $2 \tan^{-1} \left(\frac{1}{3} \right) + \tan^{-1} \left(\frac{1}{7} \right) = \frac{\pi}{4}$

5

5

5

5