214-(1)- 1st A 323-29000

MATHEMATICS

Intermediate Part-I, Class 11th (1stA 323) PAPER: I SUBJECTIVE

GROUP: II Marks: 80

Time: 2:30 hours

Note: Section-I is compulsory. Attempt any three (3) questions from Section-II SECTION-I

Write short answers to any EIGHT questions:

G01-11-2-23

 $(2 \times 8 = 16)$

i- State the DeMoiver's theorem.

Factorize 9a²+16b²

Write down two proper subsets of {0, 1}

Construct truth table $(p \rightarrow \sim p) \lor (p \rightarrow q)$

Define unary and binary operations.

vi- Find matrix X if
$$\begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$$

Solve the following system of linear equations $3x_1 - x_2 = 1$, $x_1 + x_2 = 3$

viii- If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$$
, verify that $(A^{-1})^t = (A^t)^{-1}$

ix- Solve the equation $x^{2/5} + 8 = 6x^{1/5}$

x- Find four fourth roots of 16

Discuss the nature of the roots of a quadratic equation $x^2 + 2x + 3 = 0$

When the polynomial $x^3 + 2x^2 + kx + 4$ is divided by x - 2, the remainder is 14. Find the value of k

Write short answers to any EIGHT questions:

i- Define rational fraction.

Write down the first four terms of the sequence, if $a_n = n \cdot a_{n-1}$, $a_1 = n \cdot a_{n-1}$

Find the 13th term of the sequence x, 1, 2-x, 3-2x,

Find the nth term of geometric sequence, if $\frac{a_5}{a_3} = \frac{4}{9}$ and $a_2 = \frac{4}{9}$

Sum to n terms of the series $3 + 33 + 333 + \dots$

Find the 9th term of H.P. $\frac{1}{3}$, $\frac{1}{5}$, $\frac{1}{7}$,

vii- Prove that ${}^{n}C_{r} = {}^{n}C_{n-r}$

What is the probability that a slip of numbers divisible by 4 is picked from the slips bearing numbers 1, 2, 3,, 10?

ix- If sample space $S=\{1, 2, 3, ..., 9\}$, event $A=\{2, 4, 6, 8\}$ and event $B=\{1, 3, 5\}$. Find P(A U B)

Prove by mathematical induction $r + r^2 + r^3 + \dots + r^n = \frac{r(1-r^n)}{1-r}$, $r \ne 1$

xi- Find the 6th term in the expansion of $\left(x^2 - \frac{3}{2x}\right)^{10}$

xii- Evaluate 30 correct to three places of decimal.

 $(2 \times 9 = 18)$

Write short answers to any NINE questions:

i- Write down any two fundamental trigonometric identities.

ii- In which quadrant the terminal arm of the angle lie when $Sin\theta < 0$ and $Cos\theta > 0$

iii- Verify Sin60°Cos30° - Cos60°Sin30° = Sin30°

iv- Prove that $\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$

Prove that $\cot \alpha - \tan \alpha = 2 \cot 2\alpha$

vi- Express $Sin(x + 30^{\circ}) + Sin(x - 30^{\circ})$ as product.

(Turn Over)

(2)

Guj-11-2-23

vii- Write domain and range of Sin9

viii- A ladder leaning against a vertical wall makes an angle of 24° with the wall. Its foot is 5m from the wall. Find its length.

ix- Find the area of the triangle ABC, if a = 18, b = 24, c = 30

x- Prove that $r_1 r_2 r_3 = rs^2$

xi- Show that $Cos^{-1}(-x) = \pi - Cos^{-1}x$

xii- Find the value of $Sin\left(Cos^{-1}\frac{\sqrt{3}}{2}\right)$

xiii- Prove the identity $\sin^{-1} x = \frac{\pi}{2} - \cos^{-1} x$

SECTION-II

Note: Attempt any three (3) questions.

5- (a) Reduce the matrix
$$\begin{bmatrix} 2 & 3 & -1 & 9 \\ 1 & -1 & 2 & -3 \\ 3 & 1 & 3 & 2 \end{bmatrix}$$
 into echelon form

(b) Solve the equation $(x+4)(x+1) = \sqrt{x^2 + 2x - 15} + 3x + 31$

6- (a) Resolve
$$\frac{(x-1)(x-3)(x-5)}{(x-2)(x-4)(x-6)}$$
 into partial fractions.

(b) Find the values of n and r, when ${}^{n}C_{r} = 35$ and ${}^{n}P_{r} = 210$

7- (a) Find n so that
$$\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$$
 may be H.M. between 'a' and 'b'.

(b) Use mathematical induction to prove the formula for every positive integer n

$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 2\left[1 - \frac{1}{2^n}\right]$$

8- (a) If $\csc \theta = \frac{m^2 + 1}{2m}$ and m > 0 $\left(0 < 0 < \frac{\pi}{2}\right)$

Find values of remaining trigonometric ratios.

(b) Prove that
$$Sin10^{\circ} Sin30^{\circ} Sin50^{\circ} Sin70^{\circ} = \frac{1}{16}$$

9- (a) Prove that $\Delta = 4Rr \cdot \cos \frac{\alpha}{2} \cdot \cos \frac{\beta}{2} \cdot \cos \frac{\gamma}{2}$

(b) Prove that
$$\sin^{-1} \frac{1}{\sqrt{5}} + \cot^{-1} 3 = \frac{\pi}{4}$$

5

5

5

5

214-1st A 323-29000