Rol	l No.				
		MATICS Minutes	Intermediate Part-I , Cl OBJEC Code:	/	Marks: 20
Not		correct, fill that	choices for each objective type of circle in front of that question more circles will result in zero m	question as A, B, C and D. T number. Use marker or pen to	he choice which you think is
1-	1-	A square mate (A) –A	trix A is symmetric if $A^t = (B) A$	$(C)\overline{A}$	(D) $-\overline{A}$
	2-	If $\sin \theta > 0$ ar (A) I	and $Sec\theta > 0$, then terminal arm (B) II	m of θ lies in quadrant (C) III	(D) IV
	3-		equation $3x - 1 = 0$ is true onl		(-)
		(A) $x = 3$	(B) $x = -3$	$(C) x = \frac{1}{3}$	(D) $x = \frac{1}{3}$
	4-	Reference an (A) I	gle always lies in quadrant (B) II	(C) III	(D) IV
	5-	$\cos\left(\sin^{-1}\frac{1}{\sqrt{2}}\right)$	-)=		C
		$(A) \ \frac{1}{\sqrt{2}}$	(B) 1	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{4}$
	6-	The value of	the determinant $\begin{vmatrix} 1 & 12 & 25 \\ 0 & 3 & 15 \\ 0 & 0 & 8 \end{vmatrix}$	1500	
		(A) 0	(B) 1	(C) 8	(D) 24
	7-	$\sin(\pi - \theta) = $ (A) $\sin\theta$	(B)—Sinθ	(C) Cosθ	(D) –Cosθ
	8-	If "n" is eve	n, then middle term of (a + b) ⁿ is	•
		(A) $\left(\frac{n}{2}-1\right)^{th}$	term (B) $\left(\frac{n}{2}+1\right)^{th}$ term	(C) $\left(\frac{n}{2}\right)^{th}$ term	(D) $\left(\frac{n}{2}-2\right)^{th}$ term
	9-	When $3x^4 + 4$ (A) -7	$x^3 + x - 5$ is divided by $x + 1$ (B) -6	, then remainder is (C) 6	(D) 7
1	0-	Converse of the $(A) q \rightarrow p$	he conditional $p \rightarrow q$ is (B) $\sim q \rightarrow \sim p$	$(C) \sim p \rightarrow \sim q$	$(D) p \rightarrow \sim q$
1	1-	Multiplicative	e inverse of $-3i$ is		
		(A) 3 <i>i</i>	(B) $\frac{1}{3}i$	(C) $-\frac{1}{3}i$	(D)_3i
1	2-	$A' \cap B' = $ (A) $A' - B'$	(B) A'∪B'	(C) $(A \cap B)'$	(D) (A \(\mathbb{R} \)'
1	3-	In a quadratic (A) real	equation $ax^2 + bx + c = 0$, if (B) equal	$b^2 - 4ac > 0$, then roots ar (C) rational	re (D) irrational
1	4-	20 th term of 1 (A) 38		(C) 40	(D) 41

(Turn over)

15- $\sqrt{3}$ is

(A) rational number

(B) irrational number

(C) even number

(D) odd number

 $16- r_2 =$

(A) $\frac{\Delta}{S}$

(B) $\frac{\Delta}{S-a}$

(C) $\frac{\Delta}{S-b}$

 $D) \frac{\Delta}{C}$

17- Factorial form of (n + 2) (n + 1)(n) is

 $(A)\frac{(n+2)!}{(n+1)!}$

(B) $\frac{(n+1)!}{(n-2)!}$

(C) $\frac{(n+2)!}{n!}$

(D) $\frac{(n+2)}{(n-1)}$

18- $Tan\theta$ is a periodic function of period

 $(A) \pi$

(B) $\frac{\pi}{2}$

 $(C)\frac{3\pi}{2}$

(D) 2n

19- Let A={1,2,3}, then the number of its subsets is

(A) 2

(B)3

(C)7

(D) 8

20- If a = 2i, b = 4i, then G =

 $(A)\pm 2\sqrt{2}i$

(B) $\pm 2i$

(C) $\pm 4i$

(D) $\pm \sqrt{6} i$

213-(IV)-1st A 324-32000

MATHEMATICS

Intermediate Part-I, Class 11th (1st A 324)

PAPER: I

GROUP - I

Time: 2:30 hours

SUBJECTIVE

Marks: 80

Note: Section-I is compulsory. Attempt any three (3) questions from Section-II.

SECTION-I

Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

- i- Define binary operation.
- ii- Show that the set $\{1, -1\}$ possess closure property with respect to multiplication.
- Simplify the following $(-1)^{\frac{-21}{2}}$
- Graph the number -5 6i on complex plane.
- Write the union and intersection of two sets A and B in set builder notation.
- Write down the difference between induction and deduction.

vii- Find the value of x and y if
$$\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$$

- viii- If A and B are non-singular matrices then show that $(AB)^{-1} = B^{-1}A^{-1}$
- ix- Write down two properties of determinant.
- x- Solve the equation : $x^{1/2} x^{1/4} 6 = 0$
- xi- Show that : $x^3 + y^3 + z^3 = (x + y + z)(x + \omega y + \omega^2 z)(x + \omega^2 y + \omega z)$
- xii- Show that (x-2) is a factor of $x^4 13x^2 + 36$

Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

- i- What is the difference between proper rational fraction and improper rational fraction?
- Find value of A and B if $\frac{x^2+1}{(x+1)(x-1)} = \frac{A}{x+1} + \frac{B}{x-1}$
- iii- Which term of the A.P 5, 2, -1, is -85?
- iv- Find the sum of infinite G.P. 2, $\sqrt{2}$, 1, v- Sum the series: 3 + 5 7 + 9 + 11 13 + 15 + 17 19 to 3n terms.
- vi- If $\frac{1}{K}$, $\frac{1}{2K+1}$ and $\frac{1}{4K-1}$ are in harmonic sequence, find K.
- vii- How many permutations of the letters of the word PANAMA can be made, if P is to the first letter in each arrangement?
- viii- Find the number of the diagonals of a 6-sided figure.
- ix- Two dice are thrown twice. What is probability that sum of dots shown in throw is 7?
- x- Prove that the statement is true: $n! > n^2$ for n = 4, 5
- xi- Use Binomial theorem, find the value of (.98)^{1/2} up to three decimal places.
- Find the term involving a^4 in the expansion of $\left(\frac{2}{x}-a\right)^9$

Write short answers to any NINE questions:

 $(2 \times 9 = 18)$

- i- Define Radian.
- ii- $\sin\theta = \frac{12}{13}$, terminal arm of the angle is in quadrant I. Find the values of Sec θ , Cos θ

iii- Prove that
$$\cos\left(\frac{\pi}{2} - \beta\right) = \sin\beta$$

(Turn Over)

iv- Prove that
$$\frac{\cos 11^{\circ} + \sin 11^{\circ}}{\cos 11^{\circ} - \sin 11^{\circ}} = \tan 56^{\circ}$$

v- Express the product $\sin 12^{\circ} \sin 46^{\circ}$ as sum or difference.
vi- Prove that period of tangent is π
viii- Find the period of $3\sin x$
viii- Draw the graph $y = -\sin x$, $x \in [-2\pi, 2\pi]$
ix- Find the value of θ if $\cos \theta = 0.9316$
x- Solve the right angle triangle in which $\gamma = 90^{\circ}$, $\alpha = 37^{\circ}20^{\circ}$, $a = 243$
xi- Solve the triangle ABC, if $\beta = 60^{\circ}$, $\gamma = 15^{\circ}$, $b = \sqrt{6}$
xii- Find the value of $\cos^{-1}(1/2)$
xiii- Solve the equation: $\sin^{2}x + \cos x = 1$

Section-II

(a) Show that
$$\begin{vmatrix} a + \lambda & b & c \\ a & b + \lambda & c \\ a & b & c + \lambda \end{vmatrix} = \lambda^{2}(a + b + c + \lambda)$$
5
(b) If α and β are the roots of $x^{2} - 3x + 5 = 0$, form the equation whose roots are:
$$\frac{1-\alpha}{1+\alpha} \text{ and } \frac{1-\beta}{1+\beta} = \frac{1-\alpha}{1+\alpha} = \frac{x^{2}}{1+\alpha} = \frac{x^{2}}$$

(a) Prove that $\frac{\sin\theta + \sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos\theta + \cos 3\theta + \cos 5\theta + \cos 7\theta} = \tan 4\theta$ (b) With usual notations, prove that $a^2 = b^2 + c^2 - 2bcCos\alpha$ 5

5

(a) If $\tan \theta = -\frac{1}{3}$, and terminal arm of angle θ is in quadrant II. Find the values of remaining 5 trignometric functions.

(b) Prove that $\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{3}{5} + \tan^{-1} \frac{8}{19} = \frac{\pi}{4}$ 5

213-1st A 324-32000