Rol	l No	•			
		EMATICS 0 Minutes	OBJ	Class 11th (1stA 324-1) ECTIVE de: 6198 GVJ.	Marks: 20
Note	e:	correct, fill that cir	ices for each objective type	question as A, B, C and D number. Use marker or pe	The choice which you think is en to fill the circles. Cutting or
1-	1-	a, b and c are in			
	2-	(A) $2a = b - c$ Number of term	(B) $2b = a + c$ is in expansion of $(1 + x)^{r}$	(C) $2b = a - c$	(D) $2a = b + \alpha$
		(A) n + 2	(B) $n + 1$	(C) n	(D) n –1
	3-				(-)-/-
		(A) $\frac{2ab}{a+b}$	(\mathbf{P}) $a+b$	$m H = \underline{\qquad}$ (C) $\frac{2ab}{a-b}$	a-b
			$\frac{(B)}{2ab}$	$\frac{(C)}{a-b}$	$(D) \frac{a-b}{2ab}$
	4-	$Cos(tan^{-1}0) = _{}$			
		(A) 0	(B) 1	(C)-1	(D) ∞
	5-	In $\frac{p(x)}{q(x)}$, degree	of p(x) is less than degree	e of q(x), then fraction is	
		(A) proper	(B) improper	(C) combined	(D) partial
(6-	Set having no pr	oper subset		
		(A) { }	(B) { 1 }	(C) { 1 ,/2}	$(D) \{1, 2, 3\}$
	7-		al is anumb		
	•	(A) prime	(B) rational	(C) irrational	(D) integer
8	8-		equation $x^2 - 5x + 6 = 0$	6-0	
		(A) 6	(B) -6	(C) 5	(D) -5
9-)-	${}^{n}C_{8} = {}^{n}C_{12}$, then	value of n is		
		(A) 8	(B) 12	Ø (C) 16	(D) 20
10)-		is called bicondit		•
		$(A) p \rightarrow q$	(B) $p \leftrightarrow q$	(C) p \ q	(D) p v q
11	-	$Sinx = \frac{1}{2}$, then >	(=		
		_ ~ .		_	
		(A) $\frac{\pi}{6}$	(B) $\frac{\pi}{4}$	(C) $\frac{\pi}{3}$	\sim (D) $\frac{\pi}{2}$
12	-	Number of radias	is in semi-circle	J	2
				((1) 2	(D) $\frac{2\pi}{3}$
		(A) $\frac{\pi}{2}$	(B)/π	(C) 2π	$(D)\frac{1}{3}$
13	-	$3^{2x} + 4.3^{x} + 4 = 0$	isequation.		
		(A) cubic	(B) radical	(C) reciprocal	(D) exponential
14	-	Period of tanx is	/		
	1	(A) $\frac{\pi}{2}$	$/$ (B) 3π	$(C) 2\pi$	(D) π
15		$(-1)^{-\frac{21}{2}} = \dots$			
		(A) 1	(B) -1	(C) i	(D) - <i>i</i>
16	-	[v 1] /	ar, then x =		(2)
		(A) -3/	(B) 3	(C) 1	(D) 1
17-		/	ngles of cyclic quadrilate		(D) -1
		(A)'90 (B) 120 (C) 180 (D) 270			
18-		The matrix [1 2			(2) 210
		(A) square	(B) unit	(C) null	(D) row
19-	. /	Co-ratio of Cosine			3
	/	(A) sine	(B) cosine	(C) tangent	(D) secant
20-	2		and $B = \{4, 5\}$, which is		
		(A) (1, 4)	(B) (2, 4)	(C) (3, 4)	(D) (4,3)

214-(IV)- 1stA 324-31000

Intermediate Part-I, Class 11th (1stA 324) PAPER: I TEMATICS GROUP: II Time: 2:30 hours Note: Section-I is compulsory. Attempt any three (3) questions from Section-II SUBJECTIVE Marks: 80 Write short answers to any EIGHT questions: $(2 \times 8 = 16)$ Write trichotomy and transitive properties of inequalities of real numbers. ii- Simplify $(2, 6) \div (3, 7)$ iii- Find the modulus of 3 + 4iiv- Express the complex number $1 + i\sqrt{3}$ in polar form v- Write inverse , converse and contrapositive of the conditional $\sim p \rightarrow \sim q$ vi- Define groupoid. vii- If $A = \begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$, show that $A^4 = I_2$ viii- Without expansion verify that $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \gamma + \alpha & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix} = 0$ ix- If A and B are non-singular matrices, then show that $(AB)^{-1} = B^{-1}A^{-1}$ Find the three cube roots of -27 Use the factor theorem to determine if x - 1 is a factor of $x^2 + 4x$ xii- If α , β are the roots of $3x^2 - 2x + 4 = 0$, find the value of Write short answers to any EIGHT questions: $(2 \times 8 = 16)$

i- Resolve into Partial Fractions $\frac{3x}{(x-1)(x+2)}$

ii- Define the term Partial Fraction.

iii- Write the first four terms of the sequence, if $a_n - a_{n-1} = n+2$, $a_1 = 2$

iv- If 5, 8 are two A.Ms between a and b, find a and b.

Find the sum of infinite Geometric Series $\frac{9}{4} + \frac{3}{2} + 1 + \frac{2}{3} + \dots$

vi- Find the 8th term of H.P; $\frac{1}{2}$, $\frac{1}{5}$, $\frac{1}{8}$

vii- Prove that ${}^{n}C_{r} = {}^{n}C_{n-r}$

viii- Find the value of n when ${}^{11}P_n = 11.10.9$

ix- What is the probability that a slip of numbers divisible by 4 are picked from the slips bearing numbers 1,2,3,, 10?

x- Prove that the inequality $n^2 > n + 3$ for n = 3, 4

xi- Calculate $(9.9)^5$ by means of Bionomial Theorem. xii- Expand $(1-x)^{1/2}$ upto 4 terms.

Write short answers to any NINE questions:

 $(2 \times 9 = 18)$

i- Find r when l = 5cm, $\theta = \frac{1}{2}$ radian

ii- Evaluate $\frac{\tan\frac{\pi}{3} - \tan\frac{\pi}{6}}{1 + \tan\frac{\pi}{3} \cdot \tan\frac{\pi}{6}}$

iii- Prove that $Sin(\alpha + \beta) Sin(\alpha - \beta) = Cos^2\beta - Cos^2\alpha$

(Turn Over)

- iv- Prove that $\frac{\cos 8^{\circ} \sin 8^{\circ}}{\cos 8^{\circ} + \sin 8^{\circ}} = \tan 37^{\circ}$
- v- Express as product : $Cos7\theta Cos\theta$
- vi- Define Periodicity.
- vii- Find period of $3\cos\frac{x}{5}$
- viii- Draw graph of Sinx when $x \in [0, \pi]$
 - ix- Find a and c for the right angle triangle ABC, when $\alpha = 58^{\circ}13'$, b = 125.7, $\gamma = 90^{\circ}$
 - x- A vertical pole is 8m high and length of its shadow is 6m. What is angle of elevation of the sum at that moment?
- xi- Solve the triangle ABC if b = 125, $\gamma = 53^{\circ}$, $\alpha = 47^{\circ}$
- xii- Show that $tan(Sin^{-1}x) = \frac{x}{\sqrt{1-x^2}}$
- xiii- Solve the trignometric equation $Sinx = -\frac{\sqrt{3}}{2}$

SECTION-II

5- (a) Solve the system of linear equations by Cramer's Rule:

$$2x + 2y + z = 3$$

 $3x - 2y - 2z = 1$
 $5x + y - 3z = 2$

- (b) Show that the roots of $(mx + c)^2 = 4ax$ will be equal if $c = \frac{a}{m}$, $m \neq 0$
- 6- (a) Resolve $\frac{x^2 + x 1}{(x+2)^3}$ into partial fractions.
 - (b) The sum of an infinite Geometric Series is 9 and the sum of the squares of its terms is $\frac{81}{5}$.

 Find the series.
- 7- (a) Two dice are thrown. E_1 is the event that the sum of their dots is an odd number and E_2 is the event that 1 is the dot on the top of the first die. Show that $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$
 - **(b)** Find the term independent of x in expansion of $\left(\sqrt{x} + \frac{1}{2x^2}\right)^{10}$
- 8- (a) Prove that $\sin \frac{\pi}{9} \sin \frac{2\pi}{9} \sin \frac{\pi}{3} \sin \frac{4\pi}{9} = \frac{3}{16}$
 - (b) Show that $r_2 = 4R \cos \frac{\alpha}{2} \sin \frac{\beta}{2} \cos \frac{\gamma}{2}$
- 9- (a) Find x if $\tan^2 45^\circ \cos^2 60^\circ = x \sin 45^\circ \cos 45^\circ \tan 60^\circ$
 - **(b)** Prove that $\sin^{-1} \frac{4}{5} + \sin^{-1} \frac{5}{13} + \sin^{-1} \frac{16}{65} = \frac{\pi}{2}$

214-1st A 324-31000

5

5

5

5