| Roll No.                                                        |                                                      |                                                                                                                                   |                                                                                           |                                                          |
|-----------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------|
| MATHEMATICS Time: 30 Minutes                                    |                                                      | (INTER PART-I) 3:<br>OBJECTIVE<br>Code: 6197                                                                                      |                                                                                           | Marks: 20                                                |
| <b>Note:</b> 1- 1-                                              | is correct, fill that circ<br>or filling two or more | s for each objective type que<br>cle in front of that question n<br>circles will result in zero m<br>e question paper and leave o | estion as A, B, C and D. The<br>number. Use marker or pen<br>lark in that question. Attem | e choice which you think<br>to fill the circles. Cutting |
|                                                                 | (A) $\frac{\pi}{2}$                                  | (B) π                                                                                                                             | (C) $\frac{\pi}{4}$                                                                       | (D) 4 π                                                  |
| 2-                                                              | Radius of the ear                                    | rth is                                                                                                                            |                                                                                           |                                                          |
|                                                                 | (A) 6000 Km                                          | (B) 6800 Km                                                                                                                       | (C) 6400 Km                                                                               | (D) 8400 Km                                              |
| 3-                                                              | If $a = -2$ , $b = -6$ then A.M between a and b is = |                                                                                                                                   |                                                                                           |                                                          |
|                                                                 | (A) 12                                               | (B) -8                                                                                                                            | (C) $-4$                                                                                  | (D) 4                                                    |
| 4- Multiplicative inverse of $(a, 0)$ if $a \neq 0$ is          |                                                      |                                                                                                                                   |                                                                                           | 0,                                                       |
|                                                                 | (A) $\left(\frac{1}{a}, 0\right)$                    | $(B) \qquad \frac{1}{(a,0)}$                                                                                                      | (C) (-a, 0)                                                                               | (D) $\left(0, \frac{1}{a}\right)$                        |
| 5- Transpose of a matrix $A = [a_{ij}]_{m \times n}$ is $A^t =$ |                                                      |                                                                                                                                   |                                                                                           |                                                          |
|                                                                 | (A) $[a_{ij}]_{m \times m}$                          | (B) $[a_{ji}]_{m \times n}$                                                                                                       | (C) $[a_{ji}]_{n \times m}$                                                               | (D) $[a_{ij}]_{n \times m}$                              |
| 6-                                                              | If $n \in \mathbb{Z}$ , then gen                     | neral solution of equation                                                                                                        | $\sin x = 0$ is                                                                           |                                                          |
|                                                                 | (A) $\left\{n\frac{\pi}{2}\right\}$                  | (B) $\left\{n\frac{\pi}{3}\right\}$                                                                                               | (C) $\left\{n\frac{\pi}{4}\right\}$                                                       | (D) $\{n \pi\}$                                          |
| 7-                                                              | (S-a)(S-b)(S-b)                                      | c) =                                                                                                                              |                                                                                           |                                                          |
|                                                                 | (A) $\frac{\Delta}{S}$                               | (B) $\frac{\Delta^2}{S}$                                                                                                          | (C) $\frac{\Delta}{S^2}$                                                                  | (D) $\frac{S}{\Delta}$                                   |
| 8-                                                              | Sin 540° =                                           |                                                                                                                                   |                                                                                           |                                                          |
|                                                                 | (A) 1                                                | (B) 0                                                                                                                             | (C) $\frac{1}{2}$                                                                         | (D) $\frac{1}{\sqrt{2}}$                                 |
| 9-                                                              | (n+2)(n+1)(n)                                        | =                                                                                                                                 |                                                                                           |                                                          |
|                                                                 | (A) $\frac{(n+2)!}{n!}$                              | (B) $\frac{(n+2)!}{(n-1)!}$                                                                                                       | (C) $\frac{(n+2)!}{(n+1)!}$                                                               | (D) $\frac{n!}{(n+1)!}$                                  |
| 10-                                                             | $S_n = \frac{a(r^n - 1)}{r - 1} h$                   |                                                                                                                                   |                                                                                           |                                                          |
|                                                                 | (A) $r \le 1$                                        | (B) $r = 1$                                                                                                                       | (C) $r > 1$                                                                               | (D) $r \ge 1$                                            |
| 11-                                                             | If $ A  = 0$ then A                                  |                                                                                                                                   |                                                                                           | _ 0                                                      |
|                                                                 | (A) singular                                         | (B) diagonal                                                                                                                      | (C) rectangular                                                                           | (D) symmetric                                            |

(Turn over)

 $\cos 2\theta =$ 

12-

(A)  $1-\sin^2\theta$ 

(B)  $1-2\sin^2\theta$ 

(C)  $1-2\sin\theta$ 

(D)  $2\sin^2\theta - 1$ 

Product of the roots of  $5x^2 - x - 2 = 0$  is = 13-

(A)  $\frac{1}{5}$ 

(B)  $-\frac{1}{5}$ 

(C)  $\frac{2}{5}$ 

If  $S_n = n(2n-1)$ , then  $a_1 =$ 14-

(A) 2

(B) -2

(C) 1

(D) -1

The property which makes a group Abelian is 15-

(A) associative

(B) commutative

(C) identity

(D) closure

 $\tan(\cos^{-1}\frac{\sqrt{3}}{2}) =$ 16-

(A)  $\sqrt{3}$ 

(B)  $1/\sqrt{3}$ 

To find  $T_8$  in the binomial expansion we put r =17-

(B) 9

(D) 7

The product of 4, 4<sup>th</sup> roots of unity is = 18-

(B) -1

(D) -i

 $\frac{x^3+x+1}{Q(x)}$  will be proper if the degree of Q(x) is = 19-

(A) 1

(C) 3

(D) 4

2R =20-

(D) all of these

211-(IV)-321-34000



## MATHEMATICS

Time: 2:30 hours

#### (INTER PART-I) 321 SUBJECTIVE

PAPER: I

GROUP: I

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION I GVJ-G1-21

## 4

Marks: 80

Colu

## 2. Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$ 

i- Prove 
$$\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$$
 by rules of addition.

iii- Simplify 
$$(2+\sqrt{-3})(3+\sqrt{-3})$$

iv- If 
$$U = \{1, 2, 3, \dots, 20\}$$
 and  $A = \{1, 3, 5, \dots, 19\}$  verify  $A \cup A' = U$ 

v- Write inverse and contrapositive of the conditional 
$$\sim p \rightarrow q$$

vi- For 
$$A = \{1, 2, 3, 4\}$$
, find the relation  $\{(x, y) | x + y > 5\}$  in A

vii- Find x and y if 
$$\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$$

viii- Without expansion show that 
$$\begin{vmatrix} 2 & 3 & -1 \\ 1 & 1 & 0 \\ 2 & -3 & 5 \end{vmatrix} = 0$$

ix- Find the inverse of matrix 
$$A = \begin{bmatrix} -2 & 3 \\ -4 & 5 \end{bmatrix}$$

xi- Find the remainder by using remainder theorem when first polynomial is divided by second polynomial 
$$x^2 + 3x + 7$$
,  $x + 1$ 

xii- Show that the roots of the equation 
$$(p+q)x^2-px-q=0$$
 will be rational.

#### 3. Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$ 

i Write 
$$\frac{x^2+x-1}{(x+2)^3}$$
 in form of partial fractions without finding the constants.

ii- Write 
$$\frac{1}{(x+1)^2(x^2-1)}$$
 in form of partial fractions without finding the constants.

iii- Write 1st four terms of the sequence 
$$a_n = (-1)^n(2n-3)$$

v- Find the sum of infinite geometric series 2, 
$$\sqrt{2}$$
, 1,.....

vi- Find the 9<sup>th</sup> term of harmonic sequence 
$$\frac{1}{3}$$
,  $\frac{1}{5}$ ,  $\frac{1}{7}$ ,......

viii- Write in factorial form 
$$(n+2)(n+1)n$$

xi- Expand 
$$(4-3x)^{1/2}$$
 upto three terms taking value of x such that (s.t) the expansion is valid.

Xii- Determine the middle term in the expansion of 
$$\left(\frac{1}{x} - \frac{x^2}{2}\right)^{12}$$
 (Turn over)

# (2) GUJ-G1-21

2 x 9 = 18)

## 4. Write short answers to any NINE questions:

i- If 
$$\sin \theta = -\frac{1}{\sqrt{2}}$$
 and the terminal arm is not in quadrant III, find the value of  $\cos \theta$ 

ii- Verify that 
$$\sin^2 \frac{\pi}{6} : \sin^2 \frac{\pi}{4} : \sin^2 \frac{\pi}{3} : \sin^2 \frac{\pi}{2} = 1:2:3:4$$

iii- Prove that 
$$\sec^2 A + \csc^2 A = \sec^2 A \cdot \csc^2 A$$
, where  $A \neq \frac{n\pi}{2}$ ,  $n \in \mathbb{Z}$ 

iv- If 
$$\alpha$$
,  $\beta$ ,  $\gamma$  are the angles of a triangle, then prove that  $\sin(\alpha + \beta) = \sin \gamma$ 

v- Prove that 
$$\cos(\alpha + 45^{\circ}) = \frac{1}{\sqrt{2}}(\cos \alpha - \sin \alpha)$$

vi- Prove that 
$$\frac{\sin A + \sin 2A}{1 + \cos A + \cos 2A} = \tan A$$

vii- Find the period of 
$$\tan \frac{x}{7}$$

x- Find the area of the triangle when 
$$b = 25.4$$
,  $\gamma = 36^{\circ}41'$ ,  $\alpha = 45^{\circ}17'$ 

xi- Prove that 
$$tan^{-1} \frac{5}{12} = sin^{-1} \frac{5}{13}$$

xii- Find the general solution of the trigonometric equation 
$$\sec x = -2$$

xiii- Solve the trigonometric equation and write the solution in the interval 
$$[0, 2\pi]$$
 when  $2 \sin^2 \theta - \sin \theta = 0$ 

#### SECTION II

5- (a) Show that 
$$\begin{vmatrix} b+c & a & a^2 \\ c+a & b & b^2 \\ a+b & c & c^2 \end{vmatrix} = (a+b+c)(a-b)(b-c)(c-a)$$
 5

(b) Show that the roots of 
$$x^2 + (mx + c)^2 = a^2$$
 will be equal, if  $c^2 = a^2 (1 + m^2)$ 

6- (a) Resolve 
$$\frac{x^2+1}{x^3+1}$$
 into partial fractions.

(b) If 
$$y = \frac{x}{2} + \frac{1}{4}x^2 + \frac{1}{8}x^3 + \dots$$
 and  $0 < x < 2$ , then prove that  $x = \frac{2y}{1+y}$ 

appearing on the rise 4 of 6?

(b) If x is so small that its square and higher powers can be neglected then show that 
$$\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3x}{2}$$

8- (a) Prove that 
$$\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$$
 where '\theta' is not an odd multiple of  $\frac{\pi}{2}$ 

(b) Prove without using tables/calculator that 
$$\sin 19^{\circ} \cos 11^{\circ} + \sin 71^{\circ} \sin 11^{\circ} = \frac{1}{2}$$
 5

**(b)** Show that 
$$2 \tan^{-1} \frac{2}{3} = \sin^{-1} \frac{12}{13}$$

5

211-321-34000