CINOR-TI

			17/19		
di No		CAPTED BART I) 3	19-(III) GROUP	: II PAPER: I	
athematics me: 30 Minutes		Code: 6196		Marks: 20	
ote:	or filling two or more given in objective typ	s for each objective type que cle in front of that question n circles will result in zero ma be question paper and leave o	ark in that question. Atten	to fill the circles. Cutting apt as many questions as	
1-	Expansion of (1+	$(-x)^{\frac{-1}{4}}$ is valid only if	×		
	(A) $ x > 1$	(B) $ x < 1$	(C) $ x < -1$	(D) $ x > -1$	
2-	The 8th term of se	equence $1, -3, 5, -7$ is		(D) -14	
	(A) 15	(B) −15	(C) 14		
3-	A reciprocal equa	ation remains unchanged w		ced by	
	(A) $-\frac{1}{x}$	(B) $\frac{1}{x}$	(C) $\frac{1}{x^2}$	(D) -x	
4-	The solutions of	equation $1 + \sin \theta = 0$ as	re in quadrant	177	
	(A) I and IV	(B) I and III	(C) II and IV	(D) III and IV	
5-	With usual notati	ions, radius r of inscribed	d circle is given by		
	(A) $\frac{\Delta}{s}$	(B) $\frac{s}{\Delta}$	(C) $\frac{\Delta}{s-c}$	(D) $\frac{4\Delta}{abc}$	
6-	If $\tan \theta = \frac{1}{\sqrt{3}}$	and θ is in III quadrant	then cot θ equals		
	(A) $\sqrt{3}$	(B) $\frac{1}{\sqrt{3}}$	(C) $\frac{1}{2}$	(D) $-\frac{1}{2}$	
7-	$^{n-1}C_r + ^{n-1}C_r$	equals			
	(A) n+1C _r	(B) $^{n+1}C_{r+1}$	(C) $^{n}C_{r}$	(D) $^{n-1}C_r$	
8-	$\sin(\cos^{-1}2)$ e	quals			
e i	(A) $\frac{\sqrt{3}}{2}$	(B) $\frac{1}{2}$	(C) $\frac{-\sqrt{3}}{2}$	(D) $\frac{-1}{2}$	
9-	$(x-1)^2 = x^2 -$	2x + 1 is called			
	(A) equation	(B) inequality	(C) identity	(D) polynomial	
10-	. For any two ma	trices A and B then (A	B) ^t equals		
	(A) AB	(B) $A^t B^t$	(C) $B^t A^t$	(D) BA	
11-	Additive invers	e of a ∈ TR is		e.	
	(A) 2	(B) 1	(C) $\frac{1}{2}$	(D) -a	
		Carri o		(Turn over)
		1 71 7 1	/Just 11 . /	7	

:

With usual notations, the value of a + b + c is

12-

	(A) s	(B) 2s	(C) 3s	(D) $\frac{s}{2}$			
13-	cos 315° equals						
	(A) tan (-45°)	(B) tan 45°	(C) sin 45°	(D) cosec 45°			
14-	If A and B are	disjoint then $P(A \cup B)$	equals				
8	(A) $P(A) - P(B)$	(B) P(A) P(B)	(C) $\frac{P(A)}{P(B)}$	(D) $P(A) + P(B)$			
15-	If $\begin{bmatrix} \lambda & 4 \\ 3 & 2 \end{bmatrix}$ is sin	ngular then λ is equal t	o				
	(A) 2	(B) 6	(C) 4	(D) 8			
16-	The middle term in expansion of $(a + x)^n$ when n is even is						
	(A) $\left(\frac{n}{2}+1\right)$ th	term (B) $\left(\frac{n}{2}-1\right)$ th	term (C) $\left(\frac{n}{2}\right)$ th term	m (D) $\left(\frac{n+1}{2}\right)$ th term			
17-	Period of cosec	10x is					
	(A) $\frac{\pi}{10}$	(B) $\frac{2\pi}{5}$	(C) $\frac{\pi}{5}$	(D) $\frac{4\pi}{5}$			
18-	The domain of re	elation $f = \{(a, 1), (b, 1)\}$	(c, 1) is				
	(A) $\{a, b, c\}$	(B) {a}	(C) {b}	(D) {1}			
19-	If ω is complex	cube root of unity then	ω^{15} equals				
	(A) 1	(B) zero	(C) w	(D) -ω			
20-	The arithmetic n	tean between $\frac{1}{2}$ and $\frac{1}{2}$	$\frac{1}{4}$ is .				
	(A) $\frac{3}{8}$	(B) $\frac{3}{4}$	(C) $\frac{1}{8}$	(D) $-\frac{1}{8}$			
				212-(III)-319-30000			

CI STOUP II

thematics

(INTER PART-I) 319

GROUP: II

PAPER: I

1e: 2:30 hours

SUBJECTIVE

Marks: 80

te: Section I is compulsory. Attempt any three (3) questions from Section II.

Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

Separate into real and imaginary parts $\frac{1}{1+i}$

Simplify (i)101

Show that $\forall z \in c$, $(\overline{z})^2 + z^2$ is a real number.

For the conditional $p \rightarrow q$. Write its inverse and converse.

Define disjunction of two statements p and q

If a, b are elements of a group G, then show that $(ab)^{-1} = b^{-1} a^{-1}$

Find x and y if $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$

Find the value of λ if $A = \begin{bmatrix} 4 & \lambda \\ 7 & 3 \end{bmatrix}$ is singular. viii-

Define upper triangular matrix.

Reduce $x^{-2} - 10 = 3x^{-1}$ into quadratic form.

Show that $(x^3 - y^3) = (x - y)(x - \omega y)(x - \omega^2 y)$, where ω is a cube root of unity.

Show that roots of $(p + q) x^2 - px - q = 0$ are rational.

Write short answers to any EIGHT questions:

 $(2 \times 8 = 16)$

i- Resolve $\frac{7x+25}{(x+3)(x+4)}$ into partial fractions.

Define proper rational fraction

For the identity $\frac{2x-3}{x(2x+3)(x-1)} = \frac{A}{x} + \frac{B}{2x+3} + \frac{C}{x-1}$ calculate the value of A and C.

Write the first four terms of the sequence $a_n = \frac{n}{2n+1}$

How many terms are there in A.P., in which $a_1 = 11$, $a_n = 68$, d = 3

Sum the series $\frac{1}{1+\sqrt{x}} + \frac{1}{1-x} + \frac{1}{1-\sqrt{x}} + \dots$ to n terms.

Find the 12^{th} term of the G.P 1+i, 2i, 2(1-i),

Find the sum of the following infinite geometric series $4+2\sqrt{2}+2+\sqrt{2}+1+...$ viii-

How many arrangements of the letters of the word 'MATHEMATICS', taken all together, can be made?

 $1 + 2 + 4 + \dots + 2^{n-1} = 2^n - 1$ Prove the formula for n = 1, 2

Calculate (2.02)⁴ by means of binomial theorem.

Expand $(1+x)^{\frac{1}{3}}$ upto 4-terms, taking the values of x such that the expansion is valid.

(Turn over)

4. Write short answers to any NINE questions:

 $2 \times 9 = 18$

5

5

5

5

i- What is the length of the arc intercepted on a circle of radius 14 cm by the arms of a central angle of 45°?

ii- Evaluate:
$$\frac{1-\tan^2\frac{\pi}{3}}{1+\tan^2\frac{\pi}{3}}$$

iii- Prove that:
$$\frac{1-\sin\theta}{\cos\theta} = \frac{\cos\theta}{1+\sin\theta}$$

iv- Prove that:
$$\tan\left(\frac{\pi}{4} - \theta\right) + \tan\left(\frac{3\pi}{4} + \theta\right) = 0$$

v- Prove that:
$$\tan 2a = \frac{2 \tan \alpha}{1 - \tan^2 \alpha}$$

vi- Find the value of
$$\cos 2\alpha$$
 when $\sin \alpha = \frac{12}{13}$ where $0 < \alpha < \frac{\pi}{2}$

vii- Find the period of
$$\tan \frac{x}{3}$$

ix- Find the area of the triangle ABC, given three sides
$$a = 524$$
, $b = 276$, $c = 315$

x- Show that:
$$r_1 = s \tan \frac{\alpha}{2}$$

xi- Prove that:
$$\sin^{-1}x = \frac{\pi}{2} - \cos^{-1}x$$

xii- Find the solution of equation:
$$\sin x = \frac{-\sqrt{3}}{2}$$

xiii- Solve the equation:
$$\sin^2 x + \cos x = 1$$

SECTION II

5- (a) Prove that all 2 x 2 non-singular matrices over the real field form a non-abelian group under multiplication.

(b) For what value of n,
$$\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$$
 is the positive geometric mean between a and b?

$$3x_1 + x_2 - x_3 = -4$$

$$x_1 + x_2 - 2x_3 = -4$$

$$-x_1 + 2x_2 - x_3 = 1$$

7- (a) Solve
$$4.2^{2x+1} - 9.2^x + 1 = 0$$

(b) Find the term involving
$$a^4$$
 in the expansion of $\left(\frac{2}{x} - a\right)^9$

8- (a) Prove that:
$$\sin^{6}\theta + \cos^{6}\theta = 1 - 3\sin^{2}\theta\cos^{2}\theta$$
 5

(b) Reduce
$$\sin^4 \theta$$
 to an expression involving function of multiple of θ raised to the first power.

9- (a) The sides of a triangle are
$$x^2 + x + 1$$
, $2x + 1$, $x^2 - 1$. Prove that the greatest angle of the triangle is 120° .

(b) Prove that:
$$\tan^{-1}\frac{3}{4} + \tan^{-1}\frac{3}{5} - \tan^{-1}\frac{8}{19} = \frac{\pi}{4}$$