Roll No.	of Candidate:							
CHEMÍ		(Intermediate Part-I, Class 11 th) 322 - (IV) Paper I (Group - II)						
Time: 2	0 Minutes	<u>OBJ</u>	ECTIVE	Code	: 6488 GU	1-62	Marks: 17	
Note: You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill that circle in front of that question number. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero mark in that question. Attempt as many questions as given in objective type question paper and leave others blank.								
1. 1-	The pH of 10^{-3}	mol.dm ⁻³ of a	an aqueous solution o	f H ₂ SC	O ₄ is			
	(A) 1.5			(C)		(D)	2.7	
2 -	substanc	e is used as de	ecolourizing agent in	crystal	lization process	./		
	(A) silica gel			(C)			H_2SO_4	
	Bohr model of ato	, ,		. ,				
	(A) planks quant		tica of	(B)	dual nature of n	natter		
	(C) Heisenberg's		orinciple \		all of these			
	(C) Heisenberg	o City	density decreases due	, ,	/			
			density decicases du	(B)	changes bond le	enoth		
	(A) cubic structu			/	changes bond a			
	(C) empty space:				Changes bond a	ingics		
5 -	The largest number			100	2.8 g of CO	m	5 A a of NoOs	
	(A) 3.6 g of H_2	O, (B)	4.8 g of C ₂ H ₅ OH			(D)	5.4 g of 14205	
6 -			in water may have	apour p	oressure	_ ' -£		
	(A) equal to that		/ \		more than that			
	(C) equal to that			(n)	less than that o	of water		
7 -	is a pseu					(D)	rici	
	(A) glass	(B)	CaF ₂	(C)	NaCl	(D)	HCl	
8 -	Orbitals having sa					. (**)		
	(A) degenerate of	orbitals (B)	S and P orbitals	(C)	molecular orbi	tals (D)	valence orbitals	
9 -	In Sp ³ hybrid orb	ital "S" cha	racter is		\			
	(A) 25%	(B)		(C)		(D)	100%	
10 -	Number of molec	ules in one di	n ³ of water is close to	o	<u></u>			
	(A) 6.02×10^{23}	(B)	$\frac{12.04}{22.4} \times 10^{23}$	(C)	$\frac{18}{10^{23}}$ x10 ²³	(D)	$55.6 \times 6.02 \times 10^{23}$	
	22.4		22.4		22.4			
11 -	Solvent extraction	n is an equilib	orium process and is	control	led by		4 - C - 1 - 4 -	
	(A) law of mass	action (B) a	amount of solvent use	ed (C)	distribution law	$\frac{1}{2}$ (D)	amount of solute	
12 -	If the rate equation	on of a reaction	on 2 A+B \longrightarrow pro	oducts i	is, rate $= K[A]$	[B] and	A is present	
	in large excess th	en order of re	eaction is		\			
	(A) 1	(B)	2	(C)	3	(D)	4	
13 -	The number of b	onds in nitrog	gen molecule is					
	(A) one of and	one π (B)	one σ and two π	(C)	three sigma on	ly (D)	two σ and one π	
14 -	How many subat	omic particle	s are thought to exist	in an a	tom.			
	(A) /3	(B)		(C)		(D)	100	
15 -	Stronger the oxid	dizing agent g	reater is the		\	\		
	(A) redox poter	ntial (B)	E.M.F. of cell	(C)	oxidation potent	tial (D)	reduction potential	
16 -/		on of CO. ic	mavimum at			1		
	(A) STP	(B)	127° C and 1 atm	(C)	O°C and 2 atr	n (D) 273° C and 2 atm	
17-	For the reaction	NaOH + HC	NaCl+H ₂ O	the en	thalpy change is	called _		
/	(A) heat of read		heat of formation	(C)	heat of neutrali	zation (D) heat of combustion	
	(, -)						·(IV)-322 -31000	
			C					

CHEMISTRY

(Intermediate Part-I, Class 11th) 322

Paper I

(Group - II)

Time: 2:40 Hours

SUBJECTIVE

Marks: 68

Note: Section I is compulsory. Attempt any THREE (3) questions from Section II.

(SECTION - I)

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i What is mass spectrum?
- ii One mole of H₂SO₄ should completely react with two moles of NaOH. How does Avogadro's number help to explain it?
- iii Define limiting reactant. Give an example.
- iv Write down the names of any four major steps involved in prystallization.
- v What is ether extraction?
- vi What is paper chromatography? Name its two types.
- vii What is mean square velocity?
- viii Where is plasma found?
 - ix Derive Charle's law from kinetic molecular theory of gases.
 - x What is common ion effect? Give an example.
 - xi Write down the Henderson's equation to determine the pH of a buffer solution.
- xii Define solubility product. Give an example.

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i Ionic crystals are highly brittle. Justify it.
- ii Cleavage of the crystals is itself anisotropic behaviour. Justify it.
- iii Diamond is hard and an electrical insulator. Justify it,
- iv Boiling needs a constant supply of heat. Justify it.
- v How the C_{29}^{65} can be converted into C_{29}^{66} .
- vi What is Zeeman effect?
- vii Define Moseley's law and give its relationship/equation.
- viii Define Pauli's exclusion principle.
- ix Define parts per million (PPM) and give its expression.
- x Define critical solution temperature and give an example.
- xi What is catalytic poisoning? Give an example.
- xii Define catalysis and give two examples of catalysed reactions.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i Why the molecules of BF3 are triangular planar?
- ii Define covalent radius. Give one example.
- iii Define shielding effect. How it varies across the period?
- iv Define coordinate covalent bond Give one example.
- v Differentiate between endothermic and exothermic reaction.
- vi What is lattice energy? Give one example.
- vii Enthalpy of neutralization of a strong acid and a base is always -57.5 K cal mole⁻¹. Why?
- viii Calculate the oxidation number of chromium in the following compounds:
 - a) CrO₃
- b) Cr₂O₃
- ix Define oxidation state. Give example.

(Turn Over)

Note: Attempt any THREE (3) questions from Section II..

1 - 1

5.	(a) Explain the concept of limiting reactant with a suitable example.Also write down steps to identify a limiting reactant.	1+1+2 (4)
	(b) Define quantum numbers and explain in detail azimuthal quantum number.	1+3 (4)
6.	(a) 250 cm ³ of the sample of hydrogen effuses four times as rapidly as 250 cm ³ of an unknown gas. Calculate the molar mass of unknown gas.	(4)
	(b) Discuss any two industrial importance of electrolytic process.	(4)
7.	(a) Explain the geometry of NH ₃ using hybridization.	3+1 (4)
	(b) State and explain Hess's law of constant heat summation with an example.	1+3 (4)
0	(a) Design about atmost use of ign	(4)
0.	(a) Brief about structure of ice.(b) Calculate the pH of buffer solution in which 0.11 M CH₃COONa and	(4)
	0.09 M CH ₃ COOH solutions are present while ka for CH ₃ COOH is 1.85×10	
9.	(a) What is solubility curve? Discuss its types with examples.	(4)
	(b) What in catalysis? Give any three characteristics of catalyst with examples.	(4)
		216-322-31000
	1	