To be filled in by the candidate.

			1	
Paper Code	2	4	7	7

Sessions;2015-2017,2016-2018 & 2017-2019

(C) Electromagnetic waves

rhy	ysics	(Objective Ty	pe)					
Time	e: 20 Mir	nutes						Marks: 1
NOT	E: Write	answers to the qu	uestic	ons on objective answer	shee	t provided. Four possi	ble a	nswers A,B,C & D to each
aues	tion are q	iven.Which answ	er yo	u consider correct, fill the	con	responding circle A,B,	C or	D given in front of each
				he answer sheet provided				
1.1	If the per	riod of wavemotic	n is (0.01Sec and wave speed	is 1	00mS ⁻¹ then frequenc	y of v	wave is:
	(A) 0.5			1 Hz		10 Hz		100 Hz
2		ding its correct lo			• •			
٤.		tter waves		Ultrasonic waves	(C)	Infrasonic waves	(D)	Electromagnetic waves
2				not be polarized:	(-)		(-)	
۵.					(C)	X-rays	(D)	Sound waves
		dio waves		•			(5)	Could waves
4.				to measure the speed o		Target (Transport 1995)	(D)	Neuton
1920	(A) Mic			Huygen		Galileo	(10)	Newton
5.				e equation $w = -\Delta u$ rep			(D)	A Nahadia assessa
				sothermal compression			(D)	Adiabatic compression
• B.	The pote			lecules of an ideal gas is				
	(A) 100		(B) 2			273J	(D)	Zero J
7.	In colour	r printing the who		nge of colours can be obt				
		e colours		four colours	-	five colours	(D)	seven colours
8.	Minimum	n number of unec		orces whose vector sum				
	(A) 5	14	(B)	100	(C)	3	(D)	2
• 9.		in momentum is					(5)	140 - 64
	(A) Ford			Energy	(C)			Weight
• 10.				he mass of the fuel of the		60% of rocket mass		
				40% of rocket mass	(0.5000	60% of focket mass	(ט)	00% of focket mass
9 1.		100.000		orce among the following	(C)	Elastic spring force	(D)	Electric force
12				Gravitational force ter clockwise direction the				
12.		vards the centre	couri	ter clockwise direction th		Away form the centr		ony will bo.
		ng the linear velo	ocity					dius and linear velocity
13		•		hoop about the axis of ro				
10.	(A) 50 I			100 Kgm ²		150 Kgm²		250 Kgm ²
14.				diving down with an acce			me:	
	(A) Half			Zero		Double		Increases to four times
. 15		units of flow rate						
	(A) mS	-1	(B)	m ² S ⁻²	(C)	m ³ S ⁻¹	(D)	m^3S^{-2}
16.	When the	ree-fourth of the	cycle	of a vibrating body comp	letec	then the phase of vil	bratio	on is:
	(A) $\frac{\pi}{4}$	radian	(B)	$\frac{\pi}{2}$ radian	(C)	$\frac{3\pi}{2}$ radian	(D)	π radian
17.	Waves p	roduced in organ	pipe	es are:				
	Section 197	sverse stationan			(B)	longitudinal stationar	y wa	ves

(D) Matter waves

829-011-A-**

__(To be filled in by the candidate)

eter (Part-I)-A-2018 Kwp-11-18

Sessions; 2015-2017, 2016-2018 & 2017-2019

Physics (Essay Type)

Time: 2:40 Hours Section - I Marks: 68

2x22=44

2- Write short answers of any eight parts from the following

2 x 8 = 16

- i. Under what conditions zeros are not significant? ii. Give the drawbacks to use period of a pendulum as time standard.
- , iii. Distinguish between precision and accuracy. iv. Define radian and ste-radian. Are they basic units of S.I?
- v. Can a body rotate about its centre of gravity under the action of its weight?
- o vi. What is the unit vector in the direction of vector, $\vec{A} = 4\hat{i} + 3\hat{i}$
- vii. You are standing on the edge. What should you do to avoid falling?
- viii Can the velocity of an object reverse direction when acceleration is constant? If so give an example.
- ix. Explain the circumstances in which (a). V is zero but a is not zero (b), a is zero but V is not zero.
- x. Which will be more effective in knocking down a bear and why? (a).A rubber bullet.(b).a lead bullet of same momentum.
- . xi. When a massive body collides elastically with light stationary body, what will be their final velocities?
- xii. Why should chimney be tall for its better working?
- 3- Write short answers of any eight parts from the following.

- i. A boy uses a catapult to throw a stone which accidentally smashes a green house window, list possible energy changes.
- ii. Explain briefly how the energy is obtained from the fermentation of biomass.
- Differentiate between renewable and non-renewable energy sources with examples.
- iv. What is critical velocity for a satellite which is orbiting at nearest height to earth? Derive this value.
- v. Why does a diver change his body position before and after diving in the pool?
- wi. A hoop and disc start moving down on an inclined plane at the same time, which one will be moving faster on reaching the ground?
- vii. What is a phase angle?

x viii Define SHM and angular frequency.

- wix Write any two applications of Dopplers effect.
- x. How are beats useful in tuning a musical instrument?
- xi. Describe some common phenomenon in which resonance plays an important role
- xii. What happens when a jet plane like a concorde flies faster than speed of sound
- 4- Write short answers of any six parts from the following.

2 x 6 = 12

05

03

- i. Can visible light produce interference fringes? Explain.
- . ii. Define wave fronts also write its types
- iii. The center of Newton's ring is dark. Why?
- iv. Why would it be advantageous to use blue light with a compound microscope?
- v. Define critical angle and total internal reflection.
- vi. Is it possible to construct a heat engine that will not expel heat into the atmosphere?
- vii. Can the mechanical energy be converted completely into heat energy? if so give an example.
- viii. Define molar specific heat of a gas at constant volume and molar specific heat at constant pressure.
- ix. Does the entropy of system increase or decrease due to friction?

Section - II

NOTE: Answer any three questions from the following. 25. (a) Describe elastic collision in one dimension. Show that relative velocity before collision=Relative velocity after collision. 05 (b) A load of 10N is suspended from a clothes line. This distorts the line so that it makes an angle of 15° with the horizontal at each end. Find the tension in the clothes line. • 6. (a) What is meant by rotational Kinetic energy? Find rotational Kinetic energy for a disc and hoop. 05 (b) 100m³ of water is pumped from a reservoir into a tank 10m higher than the reservoir in 20 minutes. If density of 03 water is 1000kgm⁻³, find the power delivered by the pump. 7.4 (a) Define and explain Molar specific heat of a gas at constant pressure and at constant volume and also derive 05 relation between them. → (b) A liny water droplet of radius 0.01cm descends through air from a height. Calculate its terminal velocity. 03 Given that for air $n=19x10^{-6}$ kgm⁻¹s⁻¹ and then sity of water p=1000kgm⁻³. 8. (a) What is simple pendulum? Show that its motion is SHM. Derive a formula for its time period. 05 (b) A train is approaching a station at 90Kmh⁻¹ sounding a whistle of frequency 1000 Hz. What will be the 03 apparent frequency of the whistle heard by a listner sitting on the platform. Speed of sound v=340mS⁻¹.

9. (a) What is astronomical telescope? Using ray diagram, calculate magnification power of astronomical telescope.

from the quartz crystal. What is the interplaner spacing of the reflecting planes in the crystal?