to be filled in Ly the candidate

(For All Sessions)

Time: 30 Minutes

Mathematics (Objective)

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

The sum of infinite geometric spries with common ratio |r| < 1 is:

·a

A die is rolled. The probability that the dot on the top is greater than 4 is:

6

(D)

The value of $^{12}C_{10} =$ 3.

66

(D)

n-1

The sum of exponents of a and b in every term in the expansion of $(a + b)^n$ is:

n >

The inequality $n! > 2^n - 1$ is valid if n is:

n = 3

 $n \leq 3$

n+1

(C)

 $n \ge 3$ (D)

 $\frac{2\pi}{r}$ radians = 6.

5.

7.

 120^{0} (A) $Sin(2\pi - \theta) =$

(B)

60°

(C)

900 Cost

300

Sino The period of Sin 2x =

s(s-a) _

 -2π

 $\sin \frac{\pi}{2}$

 $-Sin\theta$

π

(C)

π

6

(D)

 $\cos \frac{\beta}{2}$

6

Hero's formula for area of triangle is: 10.

 $\sqrt{s(s-a)(s)}$

bc sin ∞ n

ox sinß (C)

 $\frac{1}{2}ab\sin r$ (D)

(D)

11.

If stnx = cosx then x =12.

 30^{0}

450 (C)

 60^{0} (D)

Positive

The equation $x^2 + 1 = 0$ has solution in 13.

Let p o q be a given conditional then $\sim q$ inverse

(C)

0 Contra positive

Q (D)

(B) Converse If A and B are non singular matrices, then (AB) 15.

 $^{-1}B^{-1}$

BA

 $B^{-1}A^{-1}$ (D)

AB $|A| \neq 0$ then system has: AX = 0 is homogeneous system with

No solution

Trivial solution

Non-trivial solution

Infinite solution (D)

(C)

(D)

1 2

An equation which remains unchanged when x is replaced by $\frac{1}{x}$ is: 18.

Exponential

(B)

Reciprocal

Radical

Reducible (D)

Partial fractions of $\frac{1}{x^2-1}$ will be of the form: 19.

General term of the sequence 1,3,5 ... is: 20.

2n + 2

2n823-11-A- 2n - 1

(D)

3n

A + Bx

 $x^2 - 1$

(For All Sessions)

GROUP-II

Time: 2:30 hours

Mathematics (Subjective:

SECTION-I

(8x2=16)

- Write short answers of any eight parts from the following: 2. Find the multiplicative inverse of (-4, 7)i.
 - Prove that Z = Z if Z is a real number.

- Write down the power set of {9, 11}
- Construct the truth table for $(P \land \sim P) \rightarrow q$

- Define a group.
- vi. If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ find the value of a and b.
- Find x if $\begin{vmatrix} 1 & x 1 & 3 \\ -1 & x + 1 & 2 \\ 2 & -2 & x \end{vmatrix} = 0$ Show that AA^{ε} is symmetric for any matrix of order 3x3. VII.
- Solve the equation: $(a+b)x^2 + (a+2b+c)x + b + c = 0$ ix.
- Find the condition that one root of $x^2 + px + q = 0$ is double the other.
- Show that the roots of $(mx + c)^2 = 4ax$ will be equal if $C \neq \frac{a}{m}$, $m \neq 0$ Xi.
- Solve the equations simultaneously: x + y = 5; $x^2 + 2y^2 = 17$ χij.
- Write short answers of any eight parts from the following: 3.

ii. Write the first three terms of $\binom{a}{n}$ Resolve into $\frac{1}{x^2-1}$ partial fraction. Evaluate: 4!.0!.1!

- If nth term of the A.F. is 3n-1, find the A.F.iii.
- Which term of the sequence: $x^2 y^2$, (x + y), $\frac{(x+y)}{(x-y)}$, is $\frac{x+y}{(x-y)}$ ٧.
- Define Harmonic Mean. Also derive formula. How many numbers greater than 1000,000 can be formed from the digits 0,2,2,2,3,4,4? VI.
- VII. Prove that: $n! > n^2$ for n = 4, 5. Find the value of n when ${}^{n}C_{10} = \frac{12 \times 11}{2!}$ viii.
- Find the sum of infinite $G.P.2, \sqrt{2}, 1, ...$ Expand $(1 + /x)^{-2}$ upto 3 terms. Χ.
- Using binomial theorems: (1,03) 1/3, calculate the value upto three decimal places. χij.
 - (9x2=18)Write short answers of any nine parts from the following:
 - Write domain and range of sin x Find θ when $k=1.5 \ cm$, $r \neq 2.5 \ cm$
- If $\tan \theta < 0$ and in which quadrant θ will be
- Prove that $R = \frac{abc}{4\Delta}$ Prove than $\sin^2 \frac{\pi}{6} + \sin^2 \frac{\pi}{3} + \tan^2 \frac{\pi}{4}$
- State law of Sines. Find the distance between A(3,8) and B(5,6)vii.
- Prove that $sin(45^{\circ} + \infty) = \frac{1}{\sqrt{2}} (sin \propto + \cos \propto)$ viii.
- Find the value of sin 2 \propto when $\cos \propto = \frac{3}{5}$ and $0 < \propto < \frac{\pi}{2}$ ix.
- $= 45^{\circ}13'$; b = 421 find a and r.
- Solve $cos x = \frac{\sqrt{3}}{2}$ where $x \in [0, 2\pi]$ Find the value of $cos(sin^{-1}\frac{1}{\sqrt{2}})$
- Define trigorhometric equation. Give one example. xiii.

SECTION-II

Attempt any three questions. Each question carries equal marks: Note

(10x3=30)

- Reduce the following matrix into echelon form: 5. (a)
 - For what value of m will the roots of following equation be equal? $(1+m)x^2 - 2(1+3m)x + (1+8m) = 0$
- **6.** (a) Resolve $\frac{x^2+1}{x^3+1}$ into partial fractions.
 - A card is drawn from a deck of 52 playing cards. What is the probability that it is a diamond card or an ace?
- Show that sum of n. A. Ms between 'a' and 'b' is equal to n times their A. M. 7. (a)
 - If x is very near equal to 1. Then prove that $Px^p qx^q \approx (p-q)x^{p+q}$
- A railway train is running on circular track of radius 500 meters at the rate of 30 km per hours. Through what angle it turn in 10 seconds. 8. (a)
 - Show that $cos20^{\circ} cos40^{\circ} cos80^{\circ} = \frac{1}{8}$
- 9.(a) Show that $r_1 = 4R \sin \frac{\alpha}{2}$. Cos $\frac{\beta}{2}$. Cos $\frac{\gamma}{2}$
 - Prove that $tan^{-1} \cdot \frac{120}{2} = 2 \cos^{-1} \frac{12}{2}$