Paper Code Number: 2198 INT		INTE	2023 (1 st ERMEDIATE PAR	-A) T-I (11 th Class)	Roll No: M TN-11-2-22		
MATHEMATICS PAPER-I			GROUP-II			20	
	IE ALLOWED: 30	Minutes		OBJECTIVE	MAXIMUM	MARKS: 20	
Q.N	correct, mit	iai bubble in i	ach objective type ront of that questi ng two or more bu	on number, on b	ubble sheet lise r	oice which you think narker or pen to fill	
S.#	QUEST	IONS	A A	B	in zero mark in th		
1	If A is a matrix o		1×1	1 × 3	3×1	D 2 2	
	then order of $AA' = $		121	1 × 3	3 × 1	3 × 3	
2	If $b^2 - 4ac < 0$ for a quadratic equation $ax^2 + bx + c = 0$ then nature of the roots is			Real and repeated	Complex or imaginary	Real and rationa	
3	Under what condition one root of $x^2 + px + q = 0$ is additive inverse of other.		p = 0	q = 0	p = 1	q = 1	
4	Partial fractions of $\frac{1}{(x-1)^2(x+1)}$ and $\frac{1}{(x-1)^2(x+1)}$		$\frac{Ax+B}{(x-1)^2} + \frac{c}{x+1}$	$\frac{A}{x-1} + \frac{B}{x+1}$	$\frac{Ax}{\left(x-1\right)^2} + \frac{B}{x-1}$	$\frac{A}{x-1} + \frac{B}{(x-1)^2} + \frac{C}{x+1}$	
5	Fifth term of geometric progression(G.P) 3, 6, 12, is:		24	48	18	30	
6	Sum of <i>n</i> term of t $\sum_{k=1}^{n} k^2 \text{ is:}$	he series	<u>n(n+1)</u> 2	$\left[\frac{n(n+1)}{2}\right]^2$	n(u+1)(2n+1)	$\left[\frac{n(2n+1)}{2}\right]^2$	
7	If ${}^{n}C_{10} = \frac{12 \times 11}{2!}$ then $n = $		8		Pl	13	
8	If A and B are tweetents then $P(A \cap$	$(B) = \underline{\hspace{1cm}}$	P(A) + P(B)	P(A)P(B)	P(A)-P(B)	P(A)+P(B)-P(A)	
9	The sum of coeffici binomial expansion	equals to .	2^{n-1}	2" +1 1	2 ²ⁿ⁻¹	2"	
10	$(1+2x)^{-1}$ is:			-2x	$4x^2$	$-8x^3$	
	The radius r of the chole in which the arm of a dentral angle of measure 1 radian cut off an aro of length 35cm is		35 cm 36 cm		30 cm	32 cm	
2	$3\sin\alpha - 4\sin^3\alpha$		cos3α	$\sin 3\alpha$	$\cos 2\alpha$	$\sin 2\alpha$	
3	The range of the fur $y = \sec x$ is:		-1 ≤ y ≤ 1	-∞< <i>y</i> <+∞	y ≤ 1	$y \ge 1 \text{ or } y \le -1$	
	If measures of the striangle ABC are a $b = 14$, $c = 15$ ther	=13	8.125	10.5	4	14	
	With usual notations		abc	4Δ	Α		
	radius $R = $		$\frac{d\delta c}{4\Delta}$		<u>\delta</u>	<u>s</u>	
_	$\sin^{-1}A + \sin^{-1}B =$		$\frac{4\Delta}{\sin^{-1}\left(A\sqrt{1+B^2}+B\sqrt{1+A^2}\right)}$	$\frac{abc}{\sin^{-1}\left(A\sqrt{1-B^2}+B\sqrt{1-A^2}\right)}$	$\frac{S}{\sin^{-1}\left(A\sqrt{1+B^2}-B\sqrt{1+A^2}\right)}$	$\frac{S}{\Delta}$ $\sin^{-1} \left(A\sqrt{1 - B^2} - B\sqrt{1 - A} \right)$	
7	Solutions of the equ	ation					
	$\sin x = -\frac{\sqrt{3}}{2} \text{ wh}$		$\frac{\pi}{6}, \frac{5\pi}{6}$	$2\pi/_{3}$, $4\pi/_{3}$	$4\pi/3$, $5\pi/3$	$\frac{\pi}{3}, \frac{4\pi}{3}$	
	$[0, 2\pi]$ are:				and the second		
8 1	If $x + iy = r\cos\theta$	$iy = r\cos\theta + ir\sin\theta$ polar form of complex $\tan^{-1}\frac{y}{x}$		$\tan \frac{y}{x}$	$\tan \frac{x}{y}$	$\tan^{-1}\frac{x}{y}$	
9 1	A compound statement form if p then q is	compound statement of the conjunction orm if p then q is called:		Disjunction	Conditional	biconditional	
1	In a square matrix A below the principal of zero is called:	all elements liagonal are	Lower triangular matrix	Upper triangular matrix	Symmetric matrix	Singular matrix	

	INTERMEDIATE PART-I (11th Class)		2023 (1 st -A)	Roll No: 1/1/-1/-2-23						
	HEMATICS PAPER-I GROUP-II			TALANTAKTAN AMADEKE, OO						
NOTE: Write same question number and its parts number on answer book, as given in the question paper.										
SECTION-I										
2. Attempt any eight parts. $8 \times 2 = 16$										
(i)	State trichotomy property and transitive property of		es of real numb	ers.						
(ii)	Separate $\frac{i}{1+i}$ into real and imaginary parts.	(iii)	Define Overl							
(iv)	Construct truth table for statement $(p \land \sim p) \rightarrow q$	(v)	Define semi-group.							
(vi)	If $A = \begin{bmatrix} i & 0 \\ 1 & -i \end{bmatrix}$, show that $A^4 = I_2$ (vii) Write two properties of determinant									
(viii)	Define Skew Hermitian Matrix.	uation $x^{\frac{1}{2}} - x^{\frac{1}{4}} - 6 = 0$								
(x)	Evaluate $(1 + \omega - \omega^2)^8$ (xi) Use factor theorem to determine if $x - 2$ is a factor of $x^3 + x^2 - 7x + 1$									
(xii)	If α and β are the roots of $3x^2 - 2x + 4 = 0$ find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$									
3. At	Attempt any eight parts. $8 \times 2 = 16$									
(i)	Define Proper Rational Fraction.									
(iii)	Which term of the A.P 5, 2, -1, is -85?									
(iv)	If 5, 8 are two A.Ms between a and b , find a and b . Sum the series $3 + 5 - 7 + 9 + 11 - 13 + 15 + 17 - 19 + \dots$ to $3n$ terms.									
(v)	If A, G and H are arithmetic, geometric and harmonic means between a and b respectively, show that $G^2 = AH$									
(vi)	Find the sum of <i>n</i> terms of the series whose <i>nth</i> term is $n^2 + 4n + 1$.									
(vii)	Prove from the first principle that ${}^{n}P_{r} = n \cdot {}^{n-1}P_{r-1}$									
(viii)	How many permutations of the letters of the word PANAMA can be made, if P is to be the first letter in each arrangement?									
(ix)	If ${}^{n}C_{8} = {}^{n}C_{12}$, find n .									
(x)	Use mathematical induction to prove $2+4+6+\dots+2n=n(n+1)$ for $n=1,2$									
(xi)	Expand by using binomial theorem $(a + 2b)^5$ (xii) $\frac{1}{a}$									
			Expand (1)	$(x)^2$ up to three terms.						
	tempt any nine parts.	n 60° (ii	Dunne that	$9 \times 2 = 18$ $\sec^2 A + \cos ec^2 A = \sec^2 A \cos ec^2 A$						
(i)	Find x, if $\tan^2 45^\circ - \cos^2 60^\circ = x \sin 45^\circ \cos 45^\circ$ tan									
(iii)	Prove that $\frac{1}{1+\sin\theta} + \frac{1}{1-\sin\theta} = 2\sec^2\theta$	(iv)		are the angles of a triangle ABC , hat $\tan (\alpha + \beta) + \tan \gamma = 0$						
(v)	Prove that $\sin(45^{\circ} + \alpha) = \frac{1}{\sqrt{2}}(\sin\alpha + \cos\alpha)$ (vi) Prove the identity $\frac{1 - \cos\alpha}{\sin\alpha} = \tan\frac{\alpha}{2}$									
(vii)	Find the period of cot 8x (viii) Find the area of triangle ABC, given three sides, $a = 18$, $b = 24$, $c = 30$									
(ix)	Prove that $r_1r_2r_3 = rs^2$ (x) A plane flying directly above a post of 6000m away from anti-aircraft gun observes the gun at an angle of depression of 27° . Find the height of the plane.									
(xi)	Find the value of $\cos\left(\sin^{-1}\frac{1}{\sqrt{2}}\right)$ (xii) Find the solutions of the equation $\cot\theta = \frac{1}{\sqrt{3}}$, θ lie in $[0, 2\pi]$									
(xiii)	Find the values of θ , $2\sin\theta + \cos^2\theta - 1 = 0$									
	SEC	TION-II								
NOTE	: Attempt any three questions.			3 × 10 = 30						
5.(a)	Find the multiplicative inverse of $A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 3 \\ 1 & 0 & 2 \end{bmatrix}$	(b)		values of a and b if -2 and 2 are of polynomial $x^3 - 4x^2 + ax + b$						
6.(a)	Resolve into partial fractions $\frac{x^2+1}{x^3+1}$									
(b)	There are twenty chits marked 1, 2, 3,, 20 in a bag. Find the probability of picking a chit, the number written on which is a multiple of 4 or a multiple of 7.									
7.(a)	Find n A.M's between α and b .									
(b)	Use mathematical induction to prove that $1 + 2 + 4 + \dots + 2^{n-1} = 2^n - 1$									
8.(a)	Prove the identity $\sin^6 \theta + \cos^6 \theta = 1 - 3\sin^2 \theta \cos^2 \theta$									
(b)	If $\alpha + \beta + \gamma = 180^{\circ}$ prove that $\cot \beta \cot \alpha + \cot \beta \cot \gamma + \cot \alpha \cot \gamma = 1$									
9.(a)	Prove that $r_1 + r_2 + r_3 - r = 4R$ (b) Prove that $\sin^{-1} \frac{77}{85} - \sin^{-1} \frac{3}{5} = \cos^{-1} \frac{15}{17}$									
		-اا	15-	-2023(1 st -A)-15000 (MULTAN)						