***	Roll No

HSSC-(P-I)-A/2024 (For All Sessions)

Paper Code	6	1	9	7	
------------	---	---	---	---	--

Mathematics(Objective)

Group-I RWP-1-WTime: 30 Minutes

Marks: 20

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

Four 4th roots of 625 are:

(A)
$$\pm 4, \pm 4i$$

B)
$$\pm 5, \pm 5i$$

(D)
$$\pm 25, \pm 25i$$

Partial fractions of $\frac{x^2+1}{(x+1)(x-1)}$ are of the form:

$$(A) \qquad \frac{A}{x+1} + \frac{B}{x-1}$$

$$\frac{Ax}{x+1} + \frac{B}{x-1}$$

(C)
$$1 + \frac{A}{x+1} + \frac{B}{x-1}$$

$$(D) \qquad \frac{Ax+B}{x+1} + \frac{Cx+D}{x-1}$$

A. M between x - 3 and x + 5 is: 3.

$$(A)$$
 $x+1$

B)
$$x-1$$

No term of a G. P can be:

x - 3

8.7.6 =5.

(A)
$$\frac{8!}{8}$$

$$\frac{8!}{7!}$$

1

x + 5

i

 $4^n > 3^n + 4$ is true for integers:

$$4^n > 3^n + 418$$

$$n \ge 3$$

$$n \ge 4$$

$$n \ge 5$$

 $n \ge 2$ If $sin \theta < 0$ and $cos \theta > 0$, then terminal arm of θ lies in quadrant: 7.

$$8. \quad \frac{1-\cos\theta}{2} =$$

(A)
$$\sin\theta$$

$$\sin^2\frac{\theta}{2}$$

Range of y = tanx is:

$$(A) \qquad \frac{-\pi}{2} \le y \le \frac{\pi}{2}$$

(B)
$$-\infty < y < \infty$$

$$\frac{-\pi}{2} \le x \le \frac{\pi}{2}$$

$$-\infty < x < \infty$$

(A)

(D)
$$-\infty < x <$$

$$\Delta \qquad \qquad (D)$$

10.
$$2\Re \sin \alpha =$$

(C)

$$\frac{1}{\sqrt{3}}$$

a

.1

π

2

11.
$$Sin\left(cos^{-1}\frac{\sqrt{3}}{2}\right) =$$

$$\frac{\sqrt{3}}{2}$$
 π

12. Reference Angle for
$$1 - 2 \sin x = 0$$
 is:

∀ Z ∈ C, which one is true: 13.

$$\frac{2}{2} = 2$$

$$\frac{1}{z} = -i$$

A prime number can be factor of a square only if it occurs in it at least.

14.

19.

Once If A and B are disjoint sets, then A 15.

(C)

$$B - A$$

The converse of $\sim p \rightarrow q$ is: 16.

$$p \rightarrow q$$

$$q \rightarrow p$$

$$p \rightarrow \sim q$$

 $p \wedge q$ is called:

$$p \wedge q$$
 is called:
(A) Conjunction

(B)

 A^tB

(C)

(D)

Equivalence
$$B^tA^t$$

 $(AB)^t =$ 18. (B) At Bt (A) A square matrix A is anti-symmetric if:

c if:
(B)
$$A^t = A$$

$$AB$$
 $\bar{A} = A$

(D)
$$\bar{A} = -A$$

 $1 + \omega + \omega^2 =$ 20.

(A)

$$A^t = -A$$

$$\mathcal{K}^2$$

. / /
. /

HSSC-(P-I)-A/2024 (For All Sessions)

SECTION-I

Marks .

Time: 2:30 hours

Mathematics (Subjective)

(GROUP-I)

RWP-1-24

(8x2=16)

Write short answers of any eight parts from the following:

- Define a complex number. Is 0 a complex number?
- Whether the set $\{0, -1\}$ is closed or not w.r.t addition and multiplication.
- Factorize: $3x^2 + 3y^2$ iii.
- Find multiplicative inverse of -3-5i
- Construct truth table of $\sim (p \rightarrow q) \rightarrow p$
- Define monoid. vi.
- Find the matrix X if: $X\begin{bmatrix} 5 & 2 \\ -2 & 1 \end{bmatrix} = \begin{bmatrix} -1 & 5 \\ 12 & 3 \end{bmatrix}$
- If A and B are square matrices of the same order, then explain why in general $(A + B)^2$ VIII.

ix. If
$$A = \begin{bmatrix} 1 \\ 1+i \\ i \end{bmatrix}$$
, find $A(\bar{A})^t$

- Find four fourth roots of 81
- Use the remainder theorem to find the remainder when $x^3 2x^2 + 3x + 3$ is divided by x 3X. xi.
- If \propto , β are the roots of $3x^2 2x + 4 = 0$, find the value of $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$ XII.

(8x2=16)

- Write short answers of any eight parts from the following: 3.
- Define conditional equation. i.
- Resolve $\frac{x^2+15}{(x^4+2x+5)(x-1)}$ into partial fraction without finding constants.
- Find the first four terms of the sequence $a_n = \frac{n}{2n+1}$ iii.
- Determine whether -19 is a term of 17, 13, 9, ...
- Find the 5th term of the G.P 3, 6, 12, V.
- Sum the series $\frac{3}{\sqrt{2}} + 2\sqrt{2} + \frac{5}{\sqrt{2}} + \dots + a_{13}$
- Prove from the first principle that ${}^{n}P_{r}=n$. ${}^{n-1}P_{r-1}$
- Find the value of n when ${}^{n}C_{12} = {}^{n}C_{6}$ viii.
- Determine the probability of getting dots less than 5 when a die is rolled. ix.
- Prove that $n! > 2^n 1$ for n = 4, 5
- Calculate (2.02)⁴ by means of binomial theorem.
- Expand $(1 + 2x)^{-1}$ up to 4 terms. XII.

(9x2=18)

- Write short answers of any nine parts from the following:
- Write values of trigonometric functions for $\theta = \frac{-9}{2}\pi$.
- Prove that $t^2\theta \cos^2\theta = \cot^2\theta \cos^2\theta$.

RWP-1-24

iii. Prove that $sin(\theta + 270) = -cos\theta$.

- iv. Prove that $sin2\theta = 2sin\theta \cos\theta$.
- v. Express $sin12^{\circ}$ $sin46^{\circ}$ as sum or difference.
- vi. Write domain and range of $\cos x$.
- vii. Find period of $\sin \frac{x}{3}$.
- viii. Draw the graph of tanx for $x \in (0, \pi)$
- ix. Prove that $r = (s b) \tan \frac{\beta}{2}$.
- x. Write any two half angle formulae.
- xi. When angle between ground and sun is 30°, flag pole casts a shadow of 40m long. Find height of top of flag.
- xii. Show that $cos(sin^{-1}x) = \sqrt{1-x^2}$.
- xiii. Solve the equation $4 \cos^2 x 3 = 0$

SECTION-II

Note: Attempt any three questions. Each question carries equal marks:

(10x3=30)

- 5.(a) If \propto and β are the roots of $x^2 3x + 5 = 0$, form the equation whose roots are $\frac{1-\alpha}{1+\beta}$ and $\frac{1-\beta}{1+\beta}$.
- (b) Find the rank of m. rix $\begin{bmatrix} 1 & -1 & 2 & 1 \\ 2 & -6 & 5 & 1 \\ 3 & 5 & 4 & -3 \end{bmatrix}$
- 6. (a) Resolve $\frac{1}{(x-1)^2(x^2+2)}$ into partial fractions.
 - (b) Find six arithmetic means between 2 and 5.
- 7. (a) A die is thrown. Find the probability that the no. of dots on the top are prime numbers or odd numbers.
 - (b) If x is so small that its cube or higher powers can be neglected, show that $\sqrt{\frac{1-x}{1+x}} \approx 1 x + \frac{1}{2}x^2$
- 8. (a) Solve the triangle ABC, given that $\propto = 35^{\circ} 17^{\circ} \beta = 45^{\circ} 13^{\circ}$, $b = 421^{\circ}$.
 - (b) Reduce $\cos^4\theta$ to an expression involving only function of multiples of θ , raised to the first power.
- 9. (a) A circular wire of radius 6 cm is cut straightened and then bent so as to lie along the circumference of a hoop of radius 24 cm. Find the measure of the angle which it subtends at the center of the hoop.
 - (b) Prove that: $tan^{-1}\frac{1}{4} + tan^{-1}\frac{1}{5} = tan^{-1}\frac{9}{19}$

826-11-A