HSSC-(P-I)-A/2024 (For All Sessions)

2 1 Paper Code 6

Time: 30 Minutes

Mathematics(Objective)

Note: Write Answers to the Questions on the objective answer sheet provided. Four possible answers A, B, C and D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with Marker or Pen ink on the answer sheet provided.

Group-II

- A complex number 1 + i can also be expressed as:
 - $2(\cos 45^\circ + i \sin 45^\circ)$
- $\sqrt{2}(\cos 45^{\circ} i \sin 45^{\circ})$ (C) (B)

Imaginary

- $\sqrt{2}(\cos 45^{\circ} + i \sin 45^{\circ})$ (D)
- 2(cos45° i sin45°)

Marks: 20

If Z is a complex number and $Z = \overline{Z}$ then Z must be:

Real

- (A)
- (B)
- (C)
- Rational (D)
- Irrational

- The set $\{(a,b)\}$ is called: 3.
- Infinite set
- Singleton set (B)
- (C)
- Empty set
- Set with two elements

- Drawing conclusion from premises believed to be true is called:
 - Proposition
- Contradiction (B)
- (C)
- (D) Induction
- Deduction

- If p is a logical statement $p \land \sim p$ is always: 5.
 - Absurdity If $A = [a \ b \ c]$, then order of A^t is:
- Contigency
- (C)

(C)

- Tautology 3×3
- (D) (D)

(D)

Conditional *

- $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ is singular then $\lambda =$

6.

3 × 1

- (C)

(D)

(D)

6

- IF $4^{3x} = \frac{1}{2}$ then x is equal to:
- (B)

- If ω is cube root of unity, then $\omega + \omega^2$

- (C) (x+2), value of B is:

(C)

5

Which of the term cannot be a term of G.P: 11.

From the identity 5x + 4 = A(x -

- (D)

- K is equal to:

- n(n+1)
- (C)
- (D)

- is equal to:

- (C)
- $^{n+1}C_r$
- (D)
- $n-1C_r$

- In expansion of $(a + b)^{16}$ middle term will be: 14.
- 11th
- 12th

- (C)

(B)

8th 13π

II

- (C)
- (D)
- 9th (D)

(D)

- 15.
- Which of the following is **NOT** Quadrantal angle? The angle $\frac{3\pi}{2} - \theta$ lies in quadrant: 16.
- (A)
- (B)
- (C)
- III
- (D)

- The range of sinx is: 17.

- (A)
- (B) [-1, 1]
- [-1, 0]
- (C)
- [0, 2]
- [-2, 2](D)

2

IV

Δ

π

- The radius of inscribed circle is: 18.
- (A)
- (B) 4Δ
- Δ
- (C) (C)

(C)

- s (D)

- Cos $\left(\sin^{-1}\frac{1}{\sqrt{2}}\right)$ is equal to:
- (A)
- 1 (B) $\bar{2}$ π (B)

 $\frac{-}{3}$ 827-11-A

- (D)

- 20. If $sinx = \frac{1}{2}$, then reference angle is:
- (A)

Time: 2:30 hours

Mathematics (Subjective)

(For All Sessions) (GROUP-II)

SECTION-I

Write short answers of any eight parts from the following: 2.

(8x2=16)

- Does the set $\{1, -1\}$ possess closure property w.r.t multiplication? Construct the multiplication table.
- If $\frac{a}{b} = \frac{c}{d}$, prove that ad = bc
- Factorize $a^2 + 4b^2$
- Simplify by expressing in the form a + bi: $(2 + \sqrt{-3})(3 + \sqrt{-3})$ iv.
- If $B = \{1, 2, 3\}$ then write down the power set of B
- Determine whether the statement p o (q o p) is a tautology or not. Vİ.
- Under what conditions, the determinant of a square matrix A is zero. Write any two conditions. vii.
- If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b. vili.
- Determine whether the matrix $A = \begin{bmatrix} 1 & 1+i \\ 1-i & 2 \end{bmatrix}$ is hermitian matrix or skew-hermitian matrix. iX.
- Solve the equation: $x^{-2} 10 = 3x^{-1}$ X.
- Find four fourth roots of 16. Xİ.
- Show that the roots of equation will be rational $px^2 (p-q)x q = 0$ χij,
- Write short answers of any eight parts from the following: 3.

(8x2=16)

- Define an identity with example. i.
- Resolve into partial fraction $\frac{1}{x^2-1}$ ii.
- The 7th and 10th terms of an H.P are $\frac{1}{3}$ and $\frac{5}{21}$ respectively, find its 14th term. * ... iii.
- Find the sum of first 15 terms of geometric sequence $1, \frac{1}{3}, \frac{1}{9}, \dots$ iv.
- Insert two G.M's between 2 and 16. ٧,
- How many terms of the series $-7 + (-5) + (-3) + \cdots$ amount to 65 vi.
- A card in drawn from a deck of 52 playing cards. What is the probability that it is a diamond card or an ace? vii.
- Find n, if ${}^nC_8 = {}^nC_{12}$ VIII.
- How many different 4-digit numbers can be formed out of the digits 1, 2, 3, 4, 5, 6, when no digit is repeated?
- Use mathematical induction to prove that $3+3.5+3.5^2+\cdots+3.5^n=\frac{3(5^{n+1}-1)}{4}$ for n=1,2
- Calculate by means of binomial theorem (2.02)⁴
- Expand upto 4 terms $(1-x)^{1/2}$ xii.
- Write short answers of any nine parts from the following:

(9x2=18)

- Find r, when l = 56cm, $\theta = 45^{\circ}$
- Verify that $sin2\theta = 2sin\theta cos\theta$ for $\theta = 45^{\circ}$ ii.
- Write the fundamental law of trigonometry.

v. Express sin5x + sin7x as a product.

- vi. Define the period of trigonometric function.
- vii. Write down the domain and range of tangent function.
- viii. Find the period of $\sin \frac{x}{3}$
- ix. Solve the right triangle ABC, in which $\gamma=90^\circ$, a=3.28, b=5.74.
- x. Define half angle formulas for tangent.
- xi. Define Hero's formula.
- xii. Find the value of $sin(tan^{-1}(-1))$
- xiii. Solve the equation sin2x = cosx where $x \in [0, 2\pi]$

SECTION-II

Note: Attempt any three questions. Each question carries equal marks:

(10x3=30)

5.(a) Show that
$$\begin{vmatrix} x & 1 & 1 & 1 \\ 1 & x & 1 & 1 \\ 1 & 1 & x & 1 \\ 1 & 1 & 1 & x \end{vmatrix} = (x+3)(x-1)^3$$

- (b) Prove that $\frac{x^2}{a^2} + \frac{(mx+c)^2}{b^2} = 1$ will have equal roots if $c^2 = a^2m^2 + b^2$; $a \neq 0, b \neq 0$
- 6. (a) Resolve into partial fractions $\frac{6x^3+5x^2-7}{2x^2-x-1}$
 - (b) The A. M between the two numbers is 5 and their positive G. M. is 4 find the numbers.
- 7. (a) Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$.
 - (b) Find the coefficient of x^5 in the expansion of $\left(x^2 \frac{3}{2x}\right)^{10}$
- 8. (a) Reduce $sin^4\theta$ to an expression involving only functions of multiples of θ raised to the first power.
 - (b) With usual notations, prove that $r = s \cdot \tan^{\alpha}/2 \cdot \tan^{\beta}/2 \cdot \tan^{\gamma}/2$
- 9. (a) If $cot\theta = \frac{5}{2}$, and θ is in quadrant i, find the value of $\frac{3sin\theta + 4cos\theta}{cos\theta sin\theta}$
 - (b) Prove that $\cos^{-1}\frac{63}{65} + 2\tan^{-1}\frac{1}{5} = \sin^{-1}\frac{3}{5}$

828-11-A