

(For all sessions)

Mathematics (Essay Type)

Time: 2:30 Hours

RwP-21

Marks: 80

Section -I

2. Write short answers of any eight parts from the following.

2x8=16

i. Separate into real and imaginary parts
$$\frac{2-7i}{4+5i}$$
. ii. Factorize $3x^2+3y^2$

iii. Simplify
$$(2,6)(3,7)$$

iv. Let
$$A = \{1, 2, 3, 4\}$$
, Find the relation $\{(x, y) \mid x + y < 5\}$ in A

iii. Simplify
$$(2,6)(3,7)$$
.

iv. Let $A = \{1,2,3,4\}$, Find the relation $\{(x,y)/x + y < 5\}$ in A

v. Write the inverse and converse of $p \rightarrow q$ vi. Find the value of x if $\begin{vmatrix} 3 & 1 & x \\ -1 & 3 & 4 \\ x & 1 & 0 \end{vmatrix} = -30$.

vii. Find the condition that one root of
$$x^2 + px + q = 0$$
 is multiplicative inverse of other.

viii. Evaluate
$$(1+w+w^2)(1-w+w^2)$$
.

ix. Solve the equation
$$ax = b$$
 where a,b are the elements of a group G

x. Discuss the nature of roots of the equation
$$2x^2 - 5x + 1 = 0$$
.

xi. If
$$A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$$
 and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$ then find the values of a and b.

xii. If A and B are square matrices of the same order, then explain why in general
$$(A+B)(A-B) \neq A^2-B^2$$
.

Write short answers of any eight parts from the following.

2x8=16

iii. Write in factorial form
$$\frac{(n+1)(n)(n-1)}{3.2.1}$$
 iv. Find the value of n , when $P_4: P_3^{n-1} = 9:1$

iv. Find the value of
$$\stackrel{n}{P}$$
, when $\stackrel{n}{P}_4:\stackrel{n-1}{P}_3=9:1$

vii. Evaluate
$$\sqrt[3]{30}$$
 correct to two places of decimals. viii. Expand by binomial theorem $\left(\sqrt{\frac{a}{x}} - \sqrt{\frac{x}{a}}\right)^3$

ix. Resolve into partial fractions
$$\frac{7x+25}{(x+3)(x+4)}$$
.

$$9x-7$$

x. Resolve into partial fractions without finding the constants
$$\frac{9x-7}{(x^2+1)(x+3)}$$

1 1 1

xi. If
$$\frac{1}{a}$$
, $\frac{1}{b}$ and $\frac{1}{c}$ are in G.P, show that the common ratio is $\pm \sqrt{\frac{a}{c}}$.

xii. Check whether,
$$1 + \frac{1}{2} + \frac{1}{4} + \dots + \frac{1}{2^{n-1}} = 2\left(1 - \frac{1}{2^n}\right)$$
 is true for $n = 1, 2$.

4. Write short answers of any nine parts from the following.

2x9=18

i. Prove that $\sec^2\theta - \cos ec^2\theta = \tan^2\theta - \cot^2\theta$ ii. Find the values of $\cos 105^0$ taking $\left(105^0 = 45^0 + 60^0\right)$

iii. Prove that
$$\frac{\sin 8x + \sin 2x}{\cos 8x + \cos 2x} = \tan (5x)$$
. Find the period of $\tan (4x)$.

v. Show that
$$\gamma = (s-c)\tan\left(\frac{\gamma}{2}\right)$$
.

vi. In
$$\triangle ABC$$
 a=3,b=6 and B=36 $^{\circ}$ 20' Find "b".

vii. Find area of
$$\triangle ABC$$
 if a=18, b=24 and c=30

vii. Find area of
$$\triangle ABC$$
 if a=18, b=24 and c=30. viii. Find the value of $\cos^{-1}\left(\frac{-1}{2}\right)$.

ix. Solve the equation
$$1 + \cos x = 0$$

x. Find the soln of equation
$$\sec x = -2$$
 which lies in $[0, 2\pi]$.

xi. What is the circular measure of the angle between the hands of a watch at 4 'o' clock.

xii. Find the values of remaining trigonometric functions when $\cos \theta = \frac{9}{41}$ and the terminal arm of the angle is in quad ly

xiii. If α , β and γ are angles of a triangle ABC then prove that $\tan(\alpha+\beta)+\tan\gamma=0$

Section -II

Note: Attempt any three questions from the following.

10x3=30

5. (a) If
$$A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$$
 verify that $(A^{-1})^t = (A^t)^{-1}$

(b) Solve the system of equations
$$x + y = 5$$
, $\frac{2}{x} + \frac{3}{y} = 2$.

6. (a) Resolve
$$\frac{1}{(1-ax)(1-bx)(1-cx)}$$
 into partial fractions.

(b) For what value of
$$n$$
, a^{n+b^n} is the positive Geometric Meam (G.M) between a and b.

7. (a) Prove that
$$C + C = C$$

(b) If
$$x$$
 is so small that its cube and higher powers can be neglected then show that $\sqrt{\frac{1+x}{1-x}} \approx 1+x+\frac{1}{2}x^2$.

8. (a) Two cities A and B lie on the equator such that their longitudes are 45 E and 25 W respectively. Find the distance between two cities, taking radius of earth as 6400 kms.

(b) Show that
$$\cos(\alpha + \beta)\cos(\alpha - \beta) = \cos^2\alpha - \sin^2\beta = \cos^2\beta - \sin^2\alpha$$

9. (a) The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 - 1$. Prove that the greatest angle of the triangle is 120^0 .

(b) Prove that
$$2 \tan^{-1} \left(\frac{1}{3} \right) + \tan^{-1} \left(\frac{1}{7} \right) = \frac{\pi}{4}$$
.