₹>	3
M	M

1 Inter. (Part-1)-A. 2018

Roll No._

to be filled in by the candidate. (For all sessions)

3 Paper Code

Mathematics (Objective Type)

Time: 30 Minutes

Marks: 20

NOTE: Write answers to the questions on objective answer sheet provided. Four possible answers A,B,C & D to each question are given. Which answer you consider correct, fill the corresponding circle A,B,C or D given in front of each question with Marker or pen ink on the answer sheet provided.

- 1-1. In any $\triangle ABC \ rr_1 r_2 r_3 = -$

- (A) Δ^4 (B) Δ^3 2. With usual notation $\sqrt{\frac{(s-b)(s-c)}{bc}}$ is equal to:
 - (A) $\cos \frac{\alpha}{2}$ (B) $\sin \frac{\alpha}{2}$

- (c) $\sin \frac{\beta}{2}$

- 3. $\cos^{-1}(-x)$ is equal to:
 - (A) $\frac{\pi}{2} \sin^{-1} x$ (B) $\frac{\pi}{2} + \sin^{-1} x$

- (D) $\pi \cos^{-1} x$

- 4: Solution of the equation $\tan x + 1 = 0$ is:
 - (A) $\left\{ \frac{3\pi}{4} + n\pi \right\}$ (B) $\left\{ \frac{\pi}{4} + n\pi \right\}$
- (C) $\{\pi + n\pi\}$
- (D) $\{2\pi + n\pi\}$, when $n \in \mathbb{Z}$

- 5. If z = a + ib, what is the value of $\cos \theta$?
 - (A) $\frac{a}{|z|}$

- (C) $\frac{a}{b}$

- 6. A function f. A B is surjective if:
- (B) Range f = B
- (C) Range $f \neq B$
- (D) Range $f \neq A$

- Determinant of any unit matrix has value:
 - (A) Greater than 1
- (B) less than 1
- (C) 1

(D) zero

- 8. A square matrix A is skew -symmetric if A^r is equal to:
 - (A) A
- (B) -A

- (C) A'
- (D) A2

- 9. The discriminant of $ax^2 + bx + c = 0$, $a \ne 0$ is:
 - (A) $b^2 + 4ac$
- (B) $4ac b^2$
- (C) $b^2 4ac$
- (D) $a^2 4ac$

The degree of the equation $x^3 + 3x^2 + 4x + 5 = 0$ is

(A) 4

(D) 1

 $x^{2} + 1$

11. O(x) will be improper fraction if

(A) Degree of Q(x) = 2

(B) Degree of Q(x) = 3

(C) Degree of Q(x) = 4

(D) Degree of Q(x) = 5

12. $\sum_{K=1}^{\infty} K$ is equal to:

- (A) $\frac{n+1}{2}$

- (c) $\frac{n(n+1)}{2}$
- (D) $\frac{n(n-1)}{2}$

13. The geometric mean between $^{-2i}$ and 8i is:

- (A) ± 1 (B) ± 2
- (C) ± 3

(D) ±4

14. If A and B are mutually exclusive events, then $P(A \cup B)$ is equal to:

- (A) P(A) + P(B) (B) P(A) P(B)
- (D) $P(A) \cap P(B)$

15. If $C = C_1$, then n is equal to:

(A) 8

(B) 12

(C) 20

(D) 0

16. In the expansion of $(x+y)^8$, middle term is:

(A) T4

(D) T_5

17. If n is a positive even integer, then $\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots + \binom{n}{n-1}$ is equal to:

(A) 2"

(B) 2ⁿ⁺¹

(C) 2^{n-1}

(D) 3"

18. An angle in the standard position whose terminal side falls on x-axis or y-axis is:

- (A) General angle
- (B) coterminal angle
- (C) Quadrantal angle
- (D) acute angle

19. $\cos(\pi + \theta)$ is equal to:

- (A) $\sec \theta$
- (B) $-\cos\theta$

- (C) $\cos \theta$
- (D) $-\sec\theta$

Range of Cosine function is:

- (A) (-1,1)
- (B) [-1,1]

- (C) [-1,1)
- (D) (-1,1]

Mathematics

(Essay Type)

Time: 2:30 Hours

Marks: 80

Section -I

2. Write short answers of any eight parts from the following.

2x8=16

- i. Separate into real and imaginary parts $\frac{i}{1+i}$
- ii. Simplify $\left(\frac{-1}{2} \sqrt{3}/2 i\right)^3$.
- iii. Write the converse and inverse of q o p .
- Define the terms proper and improper subsets with example.

v. Find inverse of $\begin{bmatrix} -2 & 3 \\ -4 & 5 \end{bmatrix}$.

Differentiate between I_n to and on to function.

vii. For a square matrix A, |A| = |A'|

- viii. What is Rank of matrix? Explain with example.
- ix. Solve $15x^2 + 2ax a^2 = 0$ by quadratic formula.
- x. If α , β are roots of $3x^2 2x + 4 = 0$, find $\frac{\alpha}{\beta} + \frac{\beta}{\alpha}$.
- xi. Does the set $\{0,-1\}$ possess closure property w.r.t "Addition" and "multiplication"?
- xii. Show that roots of equation $(p+q)x^2 px q = 0$ are rational.
- 3. Write short answers of any eight parts from the following.

- i. Resolve into partial fractions $\frac{x^2+1}{x^2-1}$
- ii. If $y = 1 + \frac{x}{2} + \frac{x^2}{4} + \dots \infty$, show that $x = \frac{2(y-1)}{y}$.
- iii. Prove that $\sum_{k=1}^{n} K = \frac{n(n+1)}{2}$
- iv. Find n, if $P_2 = 30$

v. Find n, if $C = \frac{12 \times 11}{10}$

- vi. Define the probability.
- vii. If 5 and 8 are arithematic means between a and b find a and b.
- viii. Find 12th term of Harmonic progression $\frac{1}{3}, \frac{2}{9}, \frac{1}{6}, \dots$
- ix. In how many ways 4 keys be arranged on a circular key ring?
- x. Prove the formula $1+3+5+...+(2n-1)=n^2$ for n=1,2.
- xi. Find the term involving x^4 in the expansion of $(3-2x)^7$.
- xii. Use binomial theorem, find the value to three decimal places $(1.03)^{3}$.
- 4. Write short answers of any nine parts from the following.

2x9=18

- i. Verify $2\sin 45^0 + \frac{1}{2}\csc 45^0 = \frac{3}{\sqrt{2}}$. ii. Prove that: $\frac{2\tan \theta}{1 + \tan^2 \theta} = 2\sin \theta \cos \theta$.

iii. Prove that
$$\tan(45^{\circ} + A)\tan(45^{\circ} - A) = 1$$

iv. Prove that:
$$\frac{\sin 2\alpha}{1 + \cos 2\alpha} = \tan \alpha$$

v. Define period of a trigonometric function.

vi. Prove that
$$\gamma = (s-a)\tan\frac{\alpha}{2}$$

vii. Prove that
$$\tan^{-1} \frac{1}{4} + \tan^{-1} \frac{1}{5} = \tan^{-1} \frac{9}{19}$$

viii. Solve
$$\sin x + \cos x = 0$$

- ix. Solve the trigonometric equation $\sec^2 \theta = \frac{4}{3}$
- x. Find the radius of the circle in which the arm of the central angle of measure 1 radian cut off an arc of length 35cm.

xi. If
$$\alpha, \beta$$
 be the angle of a triangle ABC then prove that $\cos\left(\frac{\alpha+\beta}{2}\right) = \sin\frac{\gamma}{2}$.

- xii. Find the smallest angle of $\triangle ABC$, when a = 37.34, b = 3.24, c = 35.06
- xiii. Find area of triangle ABC given three sides a = 18, b = 24, c = 30.

Section -II

Note: Attempt any three questions from the following.

10x3=30

- **5.** (a) Convert into logical form and prove by truth table of $(A \cap B) = A' \cup B'$
 - (b) Find the value of a if given system has non-trivial solution

$$x_1 + 4x_2 + \lambda x_3 = 0, 2x_1 + x_2 - 3x_3 = 0, 3x_1 + \lambda x_2 - 4x_3 = 0$$

6. (a) If α , β are the roots of $x^2 - px - p - c = 0$, then prove that: $(1+\alpha)(1+\beta) = 1-C$.

(b) Resolve into partial fraction
$$(x^2 + b^2)(x^2 + c^2)(x^2 + d^2)$$

- 7. (a) The sum of 9 terms of a A.P is 171 and its eighth term is 31. Find the series.
 - (b) If x is very nearly equal 1 then prove that: $px^p qx^q \simeq (p-q)x^{p+q}$.
- **8.** (a) Find the value of remaining trigonometric function of $\sin \theta = -\frac{1}{\sqrt{2}}$

and the terminal arm of the angle is not in guad III.

(b) Prove that:
$$\frac{\sin 3\theta}{\cos \theta} + \frac{\cos 3\theta}{\sin \theta} = 2 \cot 2\theta$$

- **9.** (a) Prove that: $r_1 + r_2 + r_3 r = 4R$
 - (b) Prove that: $\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17} = \sin^{-1}\frac{77}{85}$