Paper Code Number: 2197		2024 (1st-A) INTERMEDIATE PART-I (11 th Class)		Roll No:		
MAT	HEMATICS P.	APER-I GROUP	P-I MT	N-1->	y	
TIM	E ALLOWED: 30		OBJEC	TIVE	MAXIMUM MARKS: 20	
Q.No.	is someof fill	choices for each object that bubble in front of t s. Cutting or filling two	hat question nur	nber, on but	ble sneet. Use mark	er or pen to
S.#	Till the bubble	STIONS	A A	В	С	
1	Inverse of square m	natrix exists if it is:	is: Singular Non-singular		lar Null	Symmetric
2	If A is skew symmetric, then A^2 will be		Symmetric	Skew symmetri	Hermitian	Skew Hermitian
3	Product of roots of $x^2 - 5x + 6 = 0$ is:		-6	6	5	-5
4	Roots of equation $cx^2 + ax + b = 0$ are complex if:		$b^2 - 4ac < 0$	$c^2-4ab <$	$<0 \qquad a^2 - 4bc < 0$	$a^2 - 4ac < 0$
5	$\frac{1}{x^3 + 1} = \frac{1}{x + 1} + \frac{-}{x^2}$ (Numenator of x^2)		Bx + c	B	C	B+C
6	Next term of 1, 3,	12, 60, is:	120	180	240	360
7		-2, 1, 4, 7, is:	3n-2	3n-4	-3n-3	3n-5
8	A die is rolled, pro on top are greater	bability that dots than 4:	$\frac{1}{2}$	$\frac{1}{3}$	$\frac{1}{4}$	$\frac{1}{6}$
9	Sum of odd coeffi of $(1+x)^4$ is:	cients in expansion	8	16	18	6
10	-1035° is coterminal with		60°	30°	45°	35°
11	$\cos(\alpha+\beta)-\cos(\alpha+\beta)$	$s(\alpha-\beta)=$	$-2\cos\alpha\cos\beta$	$2\cos\alpha$ co	$\cos \beta$ $2\sin \alpha \sin \beta$	$-2\sin\alpha\sin\beta$
12	Period of sec x i	s:	π	2π	3π	$\frac{\pi}{2}$
13	$\sqrt{\frac{s(s-a)}{bc}} =$		$\cos \frac{\alpha}{2}$	$\sin \frac{\alpha}{2}$	$\tan \frac{\alpha}{2}$	$\cot \frac{\alpha}{2}$
14	tan[tan-1(-1)]=		1	-1	$\frac{\pi}{4}$	$-\frac{\pi}{4}$
15	$\sin x \cos x = \frac{\sqrt{3}}{4}$, then $x = $	$\frac{\pi}{2}$	$\frac{\pi}{3}$	$\frac{\pi}{6}$	$\frac{\pi}{4}$
16	$3x + y^2i = 1 - 2i^2$, then value of x is:	$\frac{1}{3}$	1	3	Zero
17	If $z = \sqrt{3} + i$, the	en z =	4	$\sqrt{3}$ –		2
18	Inverse of $p \rightarrow 0$	q is	$\sim p \rightarrow \sim q$	$\sim q \rightarrow$	$\sim p \qquad \sim q \rightarrow p$	$q \rightarrow \sim p$
19	Set A contains	elements, then number spower set $P(A)$:	8	12	16	4
20	/1 -1\ is group	with respect to:	Addition	Subtrac	tion Square root	Multiplication

 $\{1, -1\}$ is group with respect to:

13(Obj)(公公公公公)-2024(1st-A)-22000 (MULTAN)

	HEMATICS PAPER-I GROUP-I E ALLOWED: 2.30 Hours SUBJECT	CTIVE	,	MAXIMUM MARKS: 80						
	E: Write same question number and its parts number	on ans		, as given in the question paper.						
2. At	tempt any eight parts.	N-I	1 TN	1-24 8×2=16						
(i)	Simplify $(2,6) \div (3,7)$	(ii)	0	1 2 / 0112 10						
(iii)	W G	(-)	1	into real and imaginary parts $\frac{i}{1+i}$						
	$\forall z \in C$, prove that $ -z = z = \overline{z} = -\overline{z} $	(iv)	Find the	multiplicative inverse of $-3-5i$.						
(v)	Express $\{x \mid x \in N \land x \le 10\}$ in descriptive and tabular for									
(vi)	Show $B-A$ by Venn diagram when $A\subseteq B$.	(vii)	Find x	and y if $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$						
(viii)	If $A = \begin{bmatrix} 1 & -1 \\ a & b \end{bmatrix}$, $A^2 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$, find the values of a and b . (ix) Without expansion show that $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 0$									
(x)	Find roots of the equation $5x^2 - 13x + 6 = 0$ by using quad-	ratic for	mula.							
(xi)	Find four 4 th roots of unity. (xii) Solve the equation $4^x = \frac{1}{2}$									
	tempt any eight parts. $8 \times 2 = 16$									
(i) (ii)	Define Rational fraction.									
	Write in to partial fractions $\frac{8x^2}{(x^2+1)^2(1-x^2)}$ without finding constants.									
(iii)	Write the first four terms of the sequence $a_n = (-1)^n (2n-3)$									
(iv)	How many terms are there in A.P in which $a_1 = 11$, $a_n = 68$, $d = 3$?									
(v)	Sum the series $1+4-7+10+13-16+19+22-25+$ to 3n terms.									
(vi)	Find the sum of the infinite series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots$									
(vii)	How many signals can be made with 4-different flags when any number of them are to be used at a time?									
(viii)	If ${}^{n}C_{8} = {}^{n}C_{12}$, find n .									
(ix)	Determine the probability of getting 2 heads in two successive tosses of a balanced coin.									
(x)	Prove $2+6+18+$									
(xi)	Calculate $(21)^5$ by means of Binomial theorem. (xii) Expand $(1+x)^{\frac{-1}{3}}$ up to 4 terms.									
	empt any nine parts.			9 × 2 = 18						
(i)	In a right angle triangle ABC , prove that $\sin^2 \theta + \cos^2 \theta =$	= 1								
(ii)	Prove that $\cot^2 \theta - \cos^2 \theta = \cot^2 \theta \cos^2 \theta$		(iii) Prove that $\sin 3\alpha = 3\sin \alpha - 4\sin^3 \alpha$							
(iv)	Express the product as sum or difference $\sin 12^{\circ} \sin 46^{\circ}$		(v)	Prove that $\tan\left(\frac{\pi}{4} - \theta\right) + \tan\left(\frac{3\pi}{4} + \theta\right) = 0$						
(vi)	Define period of a trigonometric function.		(vii)	Find the period of $\cos ec \frac{x}{4}$						
(viii)	Draw the graph of $y = \tan x$ for $-\pi \le x \le \pi$.									
(ix)	Find area of triangle ABC, if $a = 4.33$, $b = 9.25$, $\gamma = 56^{\circ}44'$									
(x)	Find R, if sides of triangle ABC are $a = 13$, $b = 14$, $c = 15$		(xi)	Show that $\frac{1}{2rR} = \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}$						
(xii)	Without using calculator, show that $\cos^{-1} \frac{4}{5} = \cot^{-1} \frac{4}{3}$		(xiii)	Find the solution of $\sin x \cos x = \frac{\sqrt{3}}{4}$						
Vor	SECTION-II									
NOTE:	Attempt any three questions. $3 \times 10 = 30$ Use synthetic division to find the values of p and q if $x+1$ and $x-2$									
.(-)		and X								
(b)	are the factors of the polynomial $x^3 + px^2 + qx + 6$									
5.(a)	Use matrices to solve the system of equations $x_1 - 2x_2 + x_3 = -4$, $2x_1 - 3x_2 + 2x_3 = -6$, $2x_1 + 2x_2 + x_3 = 5$ Resolve into partial fractions $\frac{1}{(x-1)^2(x+1)}$									
(b)	$(x-1)^2(x+1)$ Show that the sum of n A.Ms. between a and b is equal to n times their A.M.									
7.(a)	Find values of n and r when ${}^{n}C_{r} = 35$, ${}^{n}P_{r} = 210$									
(b)	Using Mathematical induction to show that $1+2+2^2+2^n=2^{n+1}-1$ for all non-negative integers n .									
3.(a)	Prove without using calculator $\sin 19^{\circ} \cos 11^{\circ} + \sin 71^{\circ} \sin 11^{\circ} = \frac{1}{2}$									
(b)	Solve the triangle ABC in which $a = 36.21$, $c = 30.14$ and $\beta = 78^{\circ}10'$.									
).(a)	Prove that $\frac{\tan \theta + \sec \theta - 1}{\tan \theta - \sec \theta + 1} = \tan \theta + \sec \theta$ (b) Prove that $\sin^{-1} \frac{4}{5} + \sin^{-1} \frac{5}{13} + \sin^{-1} \frac{16}{65} = \frac{\pi}{2}$									
				13-2024(1 st -A)-22000 (MULTAN)						