Paper Co	nde	1		2021 (A)	Roll	No:	
Number	0104	INT	ERMEDIA	ATE PART-	I (11th CLAS		
	EMATICS	PAPER-		ECTIVE		E ALLOWE KIMUM MA	ED: 30 Minute ARKS: 20
t o c	You have four chink is correct, or pen to fill the question. No crehis sheet of OB	fill that bu bubbles. (dit will be	bble in front Cutting or fil awarded in c	of that questi- ling two or mo	on number, on ore bubbles wil	bubble sheet I result in zer	. Use marker o mark in that
Q.No.1	mi	- /2 a /a	- -	(1) [6	(B) $-2\sqrt{2}$	$(C) 2\sqrt{2}$	(D) $-\sqrt{6}$
(1)	The A.M between			(A) VO	$(\mathbf{D}) = 2\sqrt{2}$	(C) 2V2	(B) VO
(2)	Common ratio	of G.P $\frac{1}{a}$, $\frac{1}{b}$	$\frac{1}{c}$, $\frac{1}{c}$ is:				
	$(A) \pm \sqrt{\frac{a}{c}}$				(C) $\pm \sqrt{\frac{b}{c}}$		
(3)	H.M between 3	and 7 is:		(A)	5 (B) $\sqrt{21}$	(C) $\frac{21}{5}$	(D) $\frac{5}{21}$
(4)	If A and B are	two indepe	endent events	, then $P(A \cap B)$	3) =		
	(A) P(A) + P(B)	(B) $P(A)$ –	P(B)	(C) $P(A \cup B)$	B) (D)	$P(A) \cdot P(B)$
	The number of t	erms in the		$(a+x)^n$ are:	(C) $n-1$	(D)	2 <i>n</i>
	(A) n		(B) $n + 1$				_
(6)	The value of ta	$n\theta$ for $\theta =$	30° is:	(A) $\sqrt{3}$	(B) $\frac{1}{\sqrt{3}}$ (C)	$\frac{2}{\sqrt{3}}$ (D)	$\frac{\sqrt{3}}{2}$
(7)	$\frac{5\pi}{6}$ radian =			(A) 150°		(C) 120°	(D) 60°
(8)	If $\sin \alpha = \frac{4}{5}$,	$0 < \alpha < \frac{\pi}{2}$, then cos	α =	(A) $\frac{2}{5}$	(B) $\frac{1}{5}$ (C)	$\frac{4}{5}$ (D) $\frac{3}{5}$
(9)	π is the period			(A) $\sec \theta$	(B) $\cos ec\theta$		(D) $\sin 3\theta$
(10)			usual notation	$\frac{s(s-c)}{s}$	=		
	(A) $\cos \frac{\gamma}{2}$	1	(B) $\cos \frac{\alpha}{2}$	Lof A ABC in	(C) $\cos \frac{\beta}{2}$	(D)	$\sin\frac{\alpha}{2}$
(11)	Radius of e-cir			OI DADC IS.	Δ	(D)	Δ
	(A) $\frac{\Delta}{s-a}$		(B) $\frac{\Delta}{s-c}$		(C) $\frac{\Delta}{s}$	(D)	$\frac{\Delta}{s-b}$
(12)	$(A) \frac{\Delta}{s - a}$ $2 \tan^{-1}(A) = \frac{1}{2}$						
	(A) $\tan^{-1}\left(\frac{1}{1-1}\right)$	$\left(\frac{1}{A^2}\right)$	(B) tan ⁻¹	$\frac{A}{1+A^2}$	(C) $\tan^{-1}\left(\frac{1}{2}\right)$	$\left(\frac{2A}{1-A^2}\right)$ (D)	$\tan^{-1}\left(\frac{2A}{1+A^2}\right)$
(13)	Reference and	gle of $\sin x$	$=\frac{1}{2}$ is:	(A)	$\frac{\pi}{3}$ (B) $\frac{\pi}{6}$	(C) $\frac{\pi}{4}$	(D) $\frac{\pi}{2}$
(14)			2	lecimal represe	nts:		
	(A) Rational	number	(B) Irration	al number	(C) Natural	number (D)	Whole number
(15)	If A and B				(C) $(A \cap B)$	c (D	$A \cap B^C$
(16)	(A) $A \cup B^C$	riv 1 - [a	(B) $(A \cup B)$	pper triangular		(D	f(R)
(16)	(A) $a_{\cdot \cdot} = 0$ for	or $i < i$	(B) $a_{ij} = 0$	for $i > i$	(C) $a_{ij} \neq 0$ for	i > j (D) $a_{ij} = k$ for
(17)	The trivial solu	ution of sys	tem of homos	geneous linear	equation in three	e variables is:	
	(A) (0, 0, 1)		(B) (0, 1, 0)))	(C) (0, 0, 0)	(D	(0,-1,0)
(18)	If α , β are the	ne roots of :	$x^2 - px - p$	-c=0, then a	$\alpha \beta = 0$	(1)) _ n + c
(10)	(A) $-p-c$ Sum of all the	four fourth	(B) $p + c$	is ((C) $p-c$	0 (0	$\begin{array}{ccc} (1) - p + c \\ (1) - 1 \end{array} $ (D)
(19)	sum of all the	x^2	+1	15.	(D)	(0	, - (-)
(20)	Partial fraction	()	,				
	(A) $\frac{A}{x-1} + \frac{1}{x}$	$\frac{B}{+1}$	(B) $\frac{A}{x+1}$	$+\frac{Bx+C}{x-1}$	$(C) \frac{Ax + A}{x^2 - 1}$	<u>B</u> (D	$1 + \frac{A}{x+1} + \frac{A}{x}$

INTERMEDIATE PART-I (11th CLASS)

MATHEMATICS PAPER-I

MTW-42-21

TIME ALLOWED: 2.30 Hours

GROUP-II

SUBJECTIVE

MAXIMUM MARKS: 80

NOTE: Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. Attempt any eight parts.

 $8 \times 2 = 16$

- (i) Prove the following rule of addition $\frac{a}{c} + \frac{b}{c} = \frac{a+b}{c}$
- (ii) Find the multiplicative inverse of (-4, 7)
- (iii) If Z_1 and Z_2 are the complex numbers then prove that $|Z_1 \cdot Z_2| = |Z_1| \cdot |Z_2|$
- (iv) Write the set $\{x \mid x \in N \land x \le 10\}$ into (i) Des
- (i) Descriptive form (ii) Tabular form
- (v) Determine that $p \to (p \lor q)$ is a tautology or not.
- (vi) Find the domain and range of the relation $\{(x, y)|x + y > 5\}$ if $A = \{1, 2, 3, 4\}$
- (vii) Find x and y if $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$
- (viii) If A and B are two square matrices of same order, then explain why in general $(A + B)(A B) \neq A^2 B^2$
- (ix) Without expansion, show that $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 0$
- (x) Find four fourth roots of unity.
- (xi) Find the number, if sum of a positive number and its reciprocal is $\frac{26}{5}$
- (xii) Discuss the nature of the roots of the equation $2x^2 + 5x 1 = 0$

3. Attempt any eight parts.

 $8 \times 2 = 16$

- (i) Resolve into partial fractions $\frac{1}{(x-1)(2x-1)(3x-1)}$
- (ii) Resolve into partial fractions, without finding the constants $\frac{x^2 + 15}{(x^2 + 2x + 5)(x 1)}$
- (iii) If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in A.P, show that $b = \frac{2ac}{a+c}$
- (iv) How many terms of the series -7 + (-5) + (-3) + ---, amount to 65?
- (v) Find geometric means between 2 and 16.
- (vi) If $y = \frac{x}{2} + \frac{1}{4}x^2 + \frac{1}{8}x^3 + ---$ and if 0 < x < 2, prove that $x = \frac{2y}{1+y}$
- (vii) Prove that ${}^{n}P_{r} = n \cdot {}^{n-1}P_{r-1}$
- (viii) How many arrangements of the letters of word, taken all together, can be made "PAKISTAN"?
- (ix) What is the probability that a slip of numbers divisible by 4 are picked from the slips bearing numbers 1, 2, 3, ---, 10?
- (x) Show that the inequality $4^n > 3^n + 4$ is true for integral values of n = 2, 3
- (xi) Expand upto three terms $(4-3x)^{1/2}$
- (xii) If x is so small that its square and higher powers can be neglected, then show that $\frac{1-x}{\sqrt{1+x}} \approx 1 \frac{3}{2}x$

 $3\times10=30$

- If $\sin \theta = -\frac{1}{\sqrt{2}} \Re(\theta)$ is in 3rd quadrant. Find the value of $\cot \theta$ (i)
- Verify that $2\sin 45^\circ + \frac{1}{2}\cos ec45^\circ = \frac{3}{\sqrt{5}}$ (ii)
- Verify that $(\sec \theta + \tan \theta) (\sec \theta \tan \theta) = 1$ (iii)
- Express sin 319° as a trigonometric function of an angle of positive degree (iv) measure of less than 45°.
- Prove that $\tan(45^{\circ} + A) \cdot Tan(45^{\circ} A) = 1$ (v)
- Prove that $1 + \tan \alpha$. $\tan 2\alpha = \sec 2\alpha$ (vi)
- Find the period of $3\cos\frac{x}{5}$ (vii)
- v.cow Solve for C in a triangle $\triangle ABC$ if $\gamma = 90^{\circ}$, $\alpha = 62^{\circ}40'$ and b = 796(viii)
- In an equilateral triangle find the value of R. (ix)
- Prove that $(r_1 + r_2) \tan \frac{\gamma}{2} = c$ (x)
- Find the value of $\cos ec(\tan^{-1}(-1))$ (xi)
- Solve $\sin x + \cos x = 0$ for $x \in [0, 2\pi]$ (xii)
- Find the solution of $\cot \theta = \frac{1}{\sqrt{3}}$ for $\theta \in [0, \pi]$

SECTION-II

Attempt any three questions. Solve the system of linear equations by Cramer's rule. 5.(a)

Solve the system of linear equations by Cramer's rule.

$$2x_1 - x_2 + x_3 = 8$$
, $x_1 + 2x_2 + 2x_3 = 6$, $x_1 - 2x_2 - x_3 = 1$

- If the roots of $px^2 + qx + q = 0$ are α and β , then prove that $\sqrt{\frac{\alpha}{\beta}} + \sqrt{\frac{\beta}{\alpha}} + \sqrt{\frac{q}{p}} = 0$
- 3x + 7 into partial fractions. 6.(a)
 - Sum of three numbers in A.P. is 24 and their product is 440. Find the numbers. (b)
- If $y = \frac{1}{3} + \frac{1 \cdot 3}{2!} \left(\frac{1}{3}\right)^2 + \frac{1 \cdot 3 \cdot 5}{3!} \left(\frac{1}{3}\right)^3 + ----$ then prove that $y^2 + 2y 2 = 0$
 - Find the values of n and r when ${}^{n}C_{r} = 35$ and ${}^{n}P_{r} = 210$ (b)
- Find the values of the trigonometric function $\frac{-1/\pi}{3}$ 8.(a)
 - Prove that $\frac{2\sin\theta\sin2\theta}{\cos\theta+\cos3\theta} = \tan2\theta\tan\theta$ (b)
- Solve the triangle ABC if a = 53; $\beta = 88^{\circ}36'$; $\gamma = 31^{\circ}54'$ 9.(a)
 - Prove that $\sin^{-1} \left(\frac{5}{13} \right) + \sin^{-1} \left(\frac{7}{25} \right) = \cos^{-1} \left(\frac{253}{325} \right)$ (b)