Dane	Code	<u>-11-011-</u>				
Numl		95 INTE	2018 (RMEDIATE PA		Roll No:	
	THEMATICS		GROUP-I	111) 1-1711		D 2014
			OBJECTIV		TIME ALLOWE MAXIMUM MA	RKS: 20
Cuttingiven	is correct, fill to ng or filling two in objective typot filled. Do no	hat bubble in fro o or more bubble pe question paper	nt of that question s will result in zero	number. Use mark in that blank. No cre	B, C and D. The choice marker or pen to fit question. Attempt a edit will be awarded APER.	ll the bubbles.
(1)		, where C stands	s for combination th	en value of n	is equals to:-	
(2)	(A) 4	(B) 20	(C) 8		(D) 12	
(2)					3 (C) $n \ge 0$ (D)	
(3)	Sing (50)	of the last term in			(A) - 1 (B) 1	
(4)	$Sin^2(5\theta) + Cos^2(5\theta) =$ (A) 5 (B) 2 (C) 1 (D) 10 For double angle identities $Sin2\alpha =$					
(5)				- 1		
(6)	(A) $1-2Sin^2a$, ,			(D) $Cos^2\alpha - Sin^2\alpha$	
(6)	(A) Index		for which $f(x +$			
(7)		(B) Doma	ual notations r_2 is	efficients	(D) Period	
(.)		1000				
	$(A) \frac{\Delta}{s}$	(B) $\frac{\Delta}{s - a}$	$(C) \frac{1}{s}$	7	(D) $\frac{\Delta}{}$	
(8)	If AARC is	right angle triangle		•	3	
	$(A) \cdot a^2 = b^2$	ight angle triangle	s such that $m \angle \alpha =$	90°, then wit	h usual notations, the	true statement is
(0)	The domain of	(B) 0 = 0	2 + c (C) c	$=a^{2}+b^{3}$	(D) $a^2 = b^2 = c^2$	
(3)	The domain of	$y = Sin^{-1}x \text{ is:-}$		(X)		
			$x \le 1$ (C) -7	$t/2 \le x \le \pi/2$	(D) $-\pi/2 < x < \pi/2$	
(10)	If $Sin x = \frac{1}{2}$ to	hen x =	-			
(1.1)			$, -5\pi/6$ (C) $\pi/3$	$\frac{2\pi}{3}$	(D) $\frac{\pi}{6}$, $\frac{5\pi}{6}$)
(11)	If n is prime (A) Rational number of $a, b \in G$,		number (C) Na up then $(ab)^{-1} =$	tural number	(D) Irrational number	er
	(A) $a^{-1}b^{-1}$	(B) $b^{-1}a^{-1}$	(C) $\frac{1}{ab}$		(D) $\frac{-1}{ab}$	
	CONTRACTOR OF THE PARTY OF THE			(A) + 1	(B) – 1 (C) – 4 ((D) 3
(14)	If $A = [a_{ij}]$	$_{3\times3}$, then $ KA $	=			
	(A) A	(B) $K A $	(C) K	A	(D) $K^3 A $	
(15)	If $x^3 + 4x^2 -$			1 1	:- (A) 10 (B) - 10	(C)
(16)			on $2x^2 + 5x - 1 = 0$. (1) 10 (2) 10	(0)0 (2)
,	(A) Irrational a	and unequal (B)	Rational and equal	(C) Imaginar	y (D) Rational and	
(17)		*	- 2	Proper (B) In	nproper (C) Polynon	nial (D) Identity
(18)		equence nth term				
1	(A) $a_1 + (n -$	1) d (B) $\frac{n}{2}$	$\left[2a_1+(n-1)d\right]$	(C) $\frac{a_1}{1}$	(D) $a_1 r^{n-1}$	
-11				1-r		
(19)	For any series	$\sum_{k=1}^{n} K = \underline{\hspace{1cm}}$				
.1	$(A) \frac{n(n+1)n}{6}$	$\frac{(2n+1)}{}$ (B) $\frac{n}{}$	$\frac{(n-1)}{2} \qquad \text{(C) } \frac{n}{2}$	$\frac{(n+1)}{2}$	(D) $\frac{n^2 (n+1)^2}{4}$	
(20)	For two events	A and B if $P($	$A) = P(B) = \frac{1}{3} \text{ th}$	en probability	$P(A \cap B) = \underline{\hspace{1cm}}$	
	(A) $\frac{1}{0}$	(B) $\frac{1}{3}$	(C) $\frac{1}{\epsilon}$		(D) 1	

MTN-11-0-1-18

2018 (A)

Roll No:

INTERMEDIATE PART-I (11th CLASS)

MATHEMATICS PAPER-I GROUP-I

TIME ALLOWED: 2.30 Hours

SUBJECTIVE

MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

2. Attempt any eight parts.

 $8 \times 2 = 16$

- (i) Write Closure Law and Commutative Law of Multiplication of Real Numbers.
- (ii) Show that $z^2 + (\bar{z})^2$ is a real number, $\forall z \in c$.
- (iii) Show that $z.\overline{z} = |z|^2$, $z \in c$.
- (iv) Define a semi group.
- (v) Write number of elements of sets $\{a, b\}$ and $\{\{a, b\}\}$.
- (vi) If $A = \{1, 2, 3, 4\}$, then write a relation in A for $\{(x, y) / x + y = 5\}$
- (vii) Define Symmetric and Skew Symmetric Matrix.
- (viii) If the matrix $\begin{bmatrix} 4 & \lambda & 3 \\ 7 & 3 & 6 \\ 2 & 3 & 1 \end{bmatrix}$ is symmetric, then find value of λ
- (ix) Without expansion, show that $\begin{vmatrix} \alpha & \beta + \gamma & 1 \\ \beta & \alpha + \gamma & 1 \\ \gamma & \alpha + \beta & 1 \end{vmatrix} = 0$
- (x) Solve $x^{\frac{1}{2}} x^{\frac{1}{4}} 6 = 0$
- (xi) Show that the polynomial (x-1) is a factor of polynomial $x^2 + 4x 5$ by using factor theorem.
- (xii) Discuss nature of roots of equation $x^2 + 2x + 3 = 0$.

Attempt any eight parts.

 $8 \times 2 = 16$

- (i) Resolve $\frac{1}{x^2}$ into partial fractions.
- (ii) Write the first four terms of the sequence, if $a_n = (-1)^n n^2$.
- (iii) How many terms of the series -7 + (-5) + (-3) + ---- amount to 65?
- (iv) Find the geometric mean between -2i and 8i.
- (v) Find the sum of the infinite geometric series $4 + 2\sqrt{2} + 2 + \sqrt{2} + 1 + ----$
- (vi) Write two important relations between arithmetic, geometric and harmonic means.
- (vii) Write the following in factorial form (n+2)(n+1)(n)
- (viii) Find the value of n, when ${}^{n}C_{12} = {}^{n}C_{6}$.
- (ix) A die is rolled. Find the probability that top shows 3 or 4 dots.
- (x) Use mathematical induction to verify for n = 1, 2 $1 + \frac{1}{2} + \frac{1}{4} + \frac{1}{2^{n-1}} = 2 \left[1 \frac{1}{2^n} \right].$
- (xi) Calculate (9.98)4 by means of binomial theorem.

- Convert the angle 54° 45' into radians. (i)
- Find r, when $\ell = 56 \, cm$ $\theta = 45^{\circ}$ in a circle. (ii)
- Prove that $\frac{1}{1 + Sin\theta} + \frac{1}{1 Sin\theta} = 2Sec^2\theta$ (iii)
- If $Cos\alpha = \frac{3}{5}$, find the value of $Cot\alpha$, where $0 < \alpha < \frac{\pi}{2}$ (iv)
- If α , β , γ are angles of a triangle $\triangle ABC$, then prove that $Sin(\alpha + \beta) = Sin\gamma$ (v)

(2)

- Prove that $Sin 3\alpha = 3 Sin \alpha 4 Sin^3 \alpha$ (vi)
- Find the period of $\tan \frac{x}{2}$ (vii)
- State the Law of Cosines. (viii)
- Find the area of $\triangle ABC$ with a = 200, b = 120 included angle $\gamma = 150^{\circ}$ (ix)
- Find R if a = 13, b = 14, c = 15 are the sides of triangle $\triangle ABC$. (x)
- Find the value of $Sin\left(Cos^{-1}\frac{\sqrt{3}}{2}\right)$ (xi)
- Solve the equation $Sin x = \frac{1}{2}$ (xii)
- Solve Sin x + Cos x = 0(xiii)

NOTE: - Attempt any three questions.

 $3 \times 10 =$

5

- Prove that all non-singular matrices of order 2 × 2 over real field form a non-abelian group under multiplication.
 - Find the value of λ for which the following system does not possess a unique solution. (b) 5 Also solve the system for the value of λ .

$$x_1 + 4x_2 + 2x_3 = 2$$

$$2x_1 + x_2 - 2x_3 = 11$$

$$3x_1 + 2x_2 - 2x_3 = 16$$

- Show that the roots of the equation $x^2 2\left(m + \frac{1}{m}\right)x + 3 = 0$, $m \neq 0$, are real. 5 6.(a)
 - Resolve $\frac{x^4}{1-x^4}$ into partial fraction. 5 (b)
- Sum the series: $\frac{1}{1+\sqrt{x}} + \frac{1}{1-x} + \frac{1}{1-\sqrt{x}} + ---- \text{ to } n \text{ terms.}$ 5 7.(a)
 - Determine the middle terms in the expansion of $\left(\frac{3}{2}x \frac{1}{3x}\right)^{11}$ 5 (b)
- 5
- Prove the following identity: $\sin^6 \theta \cos^6 \theta = \left(\sin^2 \theta \cos^2 \theta\right) \left(1 \sin^2 \theta \cos^2 \theta\right)$ Prove that: $\frac{\sin \theta + \sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos \theta + \cos 3\theta + \cos 5\theta + \cos 7\theta} = \tan 4\theta$ 5
- 9.(a) Prove that $(r_1 + r_2) Tan \frac{\gamma}{2} = c$ (with usual notations) 5
 - (b) Prove that $Cos^{-1}\frac{63}{65} + 2Tan^{-1}\frac{1}{5} = Sin^{-1}\frac{3}{5}$ 5