| Daman | MTN-11-62 | 18 | | |--|--|--|--| | Numb | Code per: 2198 INTERMEI | 2018 (A) | Roll No: | | | | UP-II | TIME ALLOWED: 30 Minutes | | MAL | | BJECTIVE | MAXIMUM MARKS: 20 | | Note | : You have four choices for each objec | tive type question | as A, B, C and D. The choice which you | | think is correct, fill that bubble in front of that question number. Use marker or pen to fill the bubbles.
Cutting or filling two or more bubbles will result in zero mark in that question. Attempt as many | | | | | questions as given in objective type question paper and leave others blank. No credit will be awarded in | | | | | Q.No. | BUBBLES are not filled. Do not solve | questions on this | sheet of OBJECTIVE PAPER. | | (1) | A reciprocal equation, remains unchange | ed when variable | x is replaced by:- | | | (A) $\frac{-1}{y}$ (B) $\frac{1}{y^2}$ | (C) - x | (D) $\frac{1}{1}$ | | (2) | Α | | ainder is:- $(A) - 6$ $(B) 7$ $(C) 6$ $(D) - 7$ | | (3) | Types of rational fractions are:- | | wo (B) Three (C) Four (D) Infinite | | (4) | Harmonic Mean between a and b is | :- (A) - | $\frac{ab}{a+b}$ (B) $\frac{a+b}{ab}$ (C) $\frac{2ab}{a+b}$ (D) $\frac{a-b}{ab}$ | | (5) | If $a = -1$ and $b = 5$ then $A \times H$ is | | | | | (A) -5 (B) $\frac{-5}{2}$ | (C) 5 | (D) $\frac{2}{5}$ | | 10 | 2 | | 100 100 100 100 100 100 100 100 100 100 | | (6) | and the second s | (where C is | | | (7) | (A) ${}^{n}C_{r-1}$ (B) ${}^{n+1}C_{r-1}$ | | 200 000. 100 | | (7) | The value of <i>n</i> when ${}^{11}P_n = 11 \times 10 \times (A) \ 0$ (B) 1 | 9 is:- (C) 2 | where P is permutation) | | (8) | In the expansion of $(3 + x)^4$ middle ten | | 81 (B) $54x^2$ (C) $26x^2$ (D) x^4 | | (9) | The inequality $4^n > 3^n + 4$ is valid | if n is:- | | | | (A) $n = 2$ (B) $n = 1$ | (C) $n = -1$ | (D) $n = -2$ | | (10) | The angle $\frac{\pi}{12}$ in degree measure is:- | (A) 30° | (B) 20° (C) 45° (D) 15° | | (11) | $\tan(\pi - \alpha)$ equals:- | | 9 | | (12) | (A) $\tan \alpha$ (B) $-\tan \alpha$
Period of $\cot 8x$ is:- | (C) $\cot \alpha$ | (D) $-\cot \alpha$ | | (12) | (A) $\frac{\pi}{8}$ (B) $\frac{\pi}{4}$ | (C) $\frac{\pi}{2}$ | (D) π | | | | 2 | | | (13) | In any triangle $\triangle ABC$, with usual nota | tion, $\sqrt{\frac{s(s-c)}{ab}}$ | is equal to:- | | | (A) $\sin \frac{\gamma}{2}$ (B) $\cos \frac{\gamma}{2}$ | (C) $\sin \frac{\alpha}{2}$ | (D) $\cos \frac{\alpha}{2}$ | | (14) | | 2 | (b) cos 2 | | (14) | In a right angle triangle no angle is great (A) 90" (B) 30" | (C) 45" | (D) 60" | | (15) | The value of $\sin^{-1}\left(\cos\frac{\pi}{6}\right)$ is equal to: | A 15 | , , | | (10) | 2- | | _ | | | (A) $\frac{\pi}{2}$ (B) $\frac{3\pi}{2}$ | (C) $\frac{\pi}{6}$ | (D) $\frac{\pi}{3}$ | | (16) | If $\sin x = \frac{1}{2}$ then x is equal to:- | | | | (, | - 5- | - 7 | -5π | | | (A) $\frac{\pi}{6}$, $\frac{5\pi}{6}$ (B) $\frac{-\pi}{6}$, $\frac{-5\pi}{6}$ | 0 | (D) $\frac{-5\pi}{6}$ | | (17) | Multiplicative inverse of complex num | ther $(\sqrt{2}, -\sqrt{5})$ | is:- | | | (A) $\left(\frac{\sqrt{2}}{\sqrt{7}}, \frac{\sqrt{5}}{\sqrt{7}}\right)$ (B) $\left(\frac{-\sqrt{2}}{\sqrt{7}}, \frac{-\sqrt{2}}{\sqrt{7}}\right)$ | $\frac{\sqrt{5}}{7}$ (C) $\left(\frac{\sqrt{2}}{7}\right)$ | $\left(\frac{\sqrt{5}}{\sqrt{7}}\right)$ (D) $\left(\frac{\sqrt{2}}{7}, \frac{\sqrt{5}}{7}\right)$ | | (18) | If A, B are two sets then $A \cap (A \cup B)$ | B) equals:- | (A) A (B) $A \cup B$ (C) B (D) ϕ | | (19) | A square matrix A is called skew sym | | | | • | (A) A (B) \overline{A} | (C) - A' | (D) - A | | (20) | If $\begin{vmatrix} 2 & \lambda \\ 3 & 7 \end{vmatrix} = 2$, then $\lambda =$ | (A) | 1 (B) 2 (C) 3 (D) 4 | | | 13 /1 | 15/01:1/5 | 2227 2018(V) 13000 (MIII TAN) | # INTERMEDIATE PART-I (11th CLASS) ### MATHEMATICS PAPER-I GROUP-II TIME ALLOWED: 2.30 Hours **SUBJECTIVE** MAXIMUM MARKS: 80 NOTE: - Write same question number and its part number on answer book, as given in the question paper. #### SECTION-I 2. Attempt any eight parts. $8 \times 2 = 16$ - (i) Prove that $\frac{7}{12} \frac{5}{18} = \frac{-21 10}{36}$ by justifying each step. (writing each property) - (ii) Simplify the following $(5, -4) \div (-3, -8)$ - (iii) Prove that $\bar{z} = z$ if and only if z is real. - (iv) Write two proper subsets of the set of real numbers R. - (v) Construct truth table for the following $(p \land \sim p) \rightarrow q$. - (vi) For a set $A = \{1, 2, 3, 4\}$, find the relation $R = \{(x, y) \mid x + y < 5\}$ in A. Also state the domain of R. - (vii) Find 'x' and 'y' if the matrices are as $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$ - (viii) If $A = [a_{ij}]_{3\times 4}$, then show that $I_3A = A$ - (ix) Without expansion show that $\begin{vmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{vmatrix} = 0$ - (x) Solve the following equation by factorization x(x+7) = (2x-1)(x+4) - (xi) Show that $x^3 y^3 = (x y)(x \omega y)(x \omega^2 y)$, where ω is a cube root of unity. - (xii) Use remainder theorem to find the remainder, when $x^2 + 3x + 7$ is divided by x + 1. ## 3. Attempt any eight parts $8 \times 2 = 16$ - (i) Define a Partial Fraction. - (ii) If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in arithmetic progression, show that $b = \frac{2ac}{a+c}$ - (iii) Find the arithmetic mean between $3\sqrt{5}$ and $5\sqrt{5}$. - (iv) If the series $y = \frac{x}{2} + \frac{x^2}{4} + \frac{x^3}{8} + ---- \infty$ and 0 < x < 2. Then prove that $x = \frac{2y}{1+y}$ - (v) If 5 is Harmonic mean between "2" and "b". Find "b". - (vi) Prove that $\sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ - (vii) How many 5 digits multiples of "5" can be formed from the digits 2, 3, 5, 7, 9 when no digit is to be repeated? - (viii) Find n if ${}^{n}C_{5} = {}^{n}C_{4}$ (C is used for combination) - (ix) What is the probability that a slip of numbers divisible by 4 is picked from slips bearing numbers 1, 2, 3, ____, 10? - (x) Use Binomial Theorem, find (21)5. - (xi) Expand up to four terms $(8-2x)^{-1}$ - (xii) If x be so small that its square and higher powers can be neglected. Then prove $\frac{\sqrt{1+2x}}{\sqrt{1-x}} \approx 1 + \frac{3x}{2}$ 4. - (i) Find " ℓ " (arc length) when r = 18mm and $\theta = 65^{\circ} 20'$. - (ii) If $\sec \theta < 0$ and $\sin \theta < 0$, in which quadrant terminal arm of '\theta' lies. - Show that $Sin^2 \frac{\pi}{6} + Sin^2 \frac{\pi}{3} + tan^2 \frac{\pi}{4} = 2$ (iii) - Prove that $Sin(180^{\circ} + \theta) Sin(90^{\circ} \theta) = -Sin\theta Cos\theta$ (iv) - Find the value of Sin15° (v) - Prove that $\tan 2\theta = \frac{2 \tan \theta}{1 + \tan^2 \theta}$ (vi) - Find the period of $\cos x/6$ (vii) - (viii) In a right $\triangle ABC$, if b = 30.8, c = 37.2 and $\gamma = 90^{\circ}$. Find α and β - Find the area of $\triangle ABC$ in which b = 21.6, c = 30.2 and $\alpha = 52^{\circ} 40'$. coll (ix) - (x) Define "Inscribed Circle". - Show that $Cos(Sin^{-1}x) = \sqrt{1-x^2}$ (xi) - Solve the equation $Sin x = \frac{1}{2}$ where $x \in [0, 2\pi]$ (xii) - Solve the equation $4\cos^2 x 3 = 0$, where $x \in [0, 2\pi]$ #### SECTION-II ### NOTE: - Attempt any three questions. $3 \times 10 = 30$ - Show that the set $\{1, \omega, \omega^2\}$, (where $\omega^3 = 1$), is an abelian group w.r.t. ordinary multiplication. 5.(a) 5 - Without expansion verify that $\begin{vmatrix} -a & 0 & c \\ 0 & a & -b \\ 0 & 0 \end{vmatrix} = 0$ (b) 5 - Resolve $\frac{x^2+1}{x^3+1}$ into Partial Fraction. 6.(a) 5 - Solve the equation $\sqrt{3x^2 7x 30} \sqrt{2x^2 7x 5} = x 5$ (b) 5 - Find the value of n so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be the Arithmetic Mean between a and b. 1 + 3 + 17.(a) - (b) Use mathematical induction to prove that the following formula holds for every positive $$\frac{1}{2 \times 5} + \frac{1}{5 \times 8} + \frac{1}{8 \times 11} + \dots + \frac{1}{(3n-1)(3n+2)} = \frac{n}{2(3n+2)}$$ - Prove that $\sin^6 \theta + \cos^6 \theta = 1 3\sin^2 \theta \cos^2 \theta$ 8.(a) 5 - Prove that $\sin \frac{\pi}{9} \sin \frac{2\pi}{9} \sin \frac{\pi}{3} \sin \frac{4\pi}{9} = \frac{3}{16}$ (b) 5 - The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 1$. 9.(a) Prove that the greatest angle of the triangle is 120° 5 - Prove that $Cos^{-1}\frac{63}{65} + 2 tan^{-1}\frac{1}{5} = Sin^{-1}\frac{3}{5}$ (b) 5