		-				0.
			2010 (4)	Roll N	MTN-	11-91-1
Beper Code		- INTERMEDI	2019 (A)	11th CLASS)	
Number:	2191			TIME	ALLOWED: 30	Minutes
	ATICS PA		TECTIVE	MAXI	MUM MARKS:	: 20
				A D Cand	D The choice wh	ich you
Note: You	have four choice	ces for each objective bble in front of that	question numbe	r. Use market	or pen to fill the	ou questions as
Cutting or	filling two or me	bble in front of that ore bubbles will res stion paper and lear or cuestions on this s	ult in zero mark	n that question	be awarded in cas	e BUBBLES
given in obj	Do not solve	stion paper and lea- e questions on this s	heet of OBJECT	IVE PAPER.		
O No 1						
(1) If I	$=\sqrt{-1}$, then i	* =				
(A)	1	(B) - 1	(C) i	(D) -	i	
(2) The	symbol used to	denote a bicondition	al between two pro	opositions is:		
		(B) ^	(C) ←→	(D) V	<i>'</i>	
		natrix A , if $AX =$	B, then $X =$			
		(B) BA ⁻¹	(C) $(AB)^{-1}$	(D) ($BA)^{-1}$	
(A)	$A^{-1}B$	1]	(0)		_	
(4) If	1 - 0 0	then $M_{13} =$	(A) 1	(B) 0	(C) 10 (D) 7	
						6 (D) 8
(5) The	number of root	s of polynomial 8x6	$-19x^3 - 27 = 0$		2 (B) 4 (C)	6 (D) 0
	Cto	and n = product of n	oots, then quadrati	c equation can	be written as:	
(6) If :	3	= 0 (B) $x^2 - sx -$	$n = 0$ (C) x^2	-sx+p=0	(D) $sx^2 - sx$	+p=0.
(A	$x^2 + sx + p = 2x^2$	= 0 (B) X - 3X	μ = υ (P) I	maroner (C)	Identity (D) Irr	ational
(7) ~	$\frac{2x^{2}}{(x+2)^{2}}$	is a fraction:	(A) Proper (B)	improper (C)		
1	$a_{*} = (-1)^{n+1}$		(A) 1	(B)-1 (C)	(33) -1	
(-)		44 and -16	i is: (A) 8	(B) - 8	$(D) \pm 8$	4
(9) Ge	the featorial form	etween 47 and -10 of $n(n-1)(n-2)$ (B) $(n-1)!$) (m-r+!	() is:		
(10) T	ne factorial form	(D) /= 1)I	(C) n!	(D)	n!	
					(n-r+1):	
(11) Y	When A and B	are two disjoint even	ts, then $P(A \cup B)$		(10 P) (D) P(A	() + P(B)
(A) $P(A) - P(B)$	(B) P(A) + P(A)	$(B) = P(A\cap B)$	(C) $P(A) - P(A)$	(A B) (B) (A	(D) (2
(12)	The statement 4	" > 3" + 4 is true if	(A) n	< 2 (B) n =	$\epsilon 2$ (C) $n \ge 2$	(D) $n \le 2$
		of $(3-2x)^{2}$, 5^{th}				
		(D) and last ten	m (C) 3 rd las	t term (D) Middle term	
	(A) Last term	angle between hands	of a watch at 3.0	'clock is: (A) 30° (B) 60° (C) 90° (D) 120°
(14)	The measure of	angle between nand	(A) I) II (C) I	II (D) IV	
(15)	- A	$-\theta$ lies in quadrant:	(A) I (B	, (0) .		
(16)	Range of the fu	nction $y = \cos x$ is:			N 10 001	
	$(A) - \infty < x < 0$	o (B) −∞ < y <	(C) -1 S	y≤1 (L	7) -15151	в В
(17)	In a AABC with	$\infty \qquad (B) - \infty < y < \frac{s}{\sqrt{s}}$ In usual notation $\sqrt{\frac{s}{\sqrt{s}}}$	$\frac{(s-a)}{s} = -(a)$	A) $\sin \frac{\alpha}{2}$ (B)	$\cos\frac{\alpha}{2}$ (C) $\cos\frac{\alpha}{2}$	(D) $\sin \frac{r}{2}$
	The second second second		- Cita all sides is			
(18)		$c^2 \sin \alpha s$	$\frac{\ln \beta}{\beta}$ (C) $\frac{1}{-ca}$	$\sin \beta$ (1	D) $\sqrt{s(s-a)(s-a)}$	b)(s-c)
(19)	Tan(Tan-1(-1))=	(A) - 1 (B)	1 (C) 2	(D) -2	
(20)	Solution set of	$(B) \frac{2\sin x}{2\sin x}$ $= \frac{1}{2} \text{ is:}$				
(20)	(4= 5=	2] π	4π	D) [0 =]	
	(A) $\left\{\frac{4\pi}{3}, \frac{5\pi}{3}\right\}$	$\left.\begin{array}{c} B \end{array}\right\} \left\{\frac{\pi}{6}, \frac{5\pi}{6}\right\}$		3	D) (0, 11)	- N/O L
	(2)	,	13	(Obj)(🏠)-201	9(A)-25000 (MUL	TAN)

Roll No

MTN-11-

INTERMEDIATE PART-I (11th CLASS)

MATHEMATICS PAPER-I GROUP-I

TIME ALLOWED: 2.30 Hours

SUBJECTIVE

MAXIMUM MARKS: 80

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

6204-I

SECTION-I

- Attempt any eight parts.
 - (i) Express $(2 + \sqrt{-3})(3 + \sqrt{-3})$ in the form of a + bi and simplify.
 - (ii) Find the multiplicative inverse of (-4, 7)
 - (iii) Factorize $9a^2 + 16b^2$
 - (iv) Define union of two sets and give an example.
 - (v) If A and B are any two sets then prove $(A \cup B)' = A' \cap B'$
 - (vi) Define tautology and absurdity.
 - (vii) If A and B are non singular matrices then prove $(AB)^{-1} = B^{-1}A^{-1}$
 - (viii) Find the inverse of matrix $A = \begin{bmatrix} -2 & 3 \\ -4 & 5 \end{bmatrix}$
 - (ix) If $A = \begin{bmatrix} 0 & 2-3i \\ -2-3i & 0 \end{bmatrix}$ then show that A is skew-hermitian.
 - (x) Solve the equation $x^{\frac{1}{2}} x^{\frac{1}{4}} 6 = 0$
 - (xi) Using factor theorem show that (x-1) is a factor of $x^2 + 4x 5$
 - (xii) The sum of a positive number and its reciprocal is $\frac{26}{5}$. Find the number

Attempt any eight parts.

 $8 \times 2 = 16$

colu

- (i) Define "Proper Rational Fraction".
- (ii) Resolve $\frac{x^2+1}{(x+1)(x-1)}$ into Partial Fractions
- (iii) For the identity $\frac{2x+1}{(x-1)(x+2)(x+3)} = \frac{A}{x-1} + \frac{B}{x+2} + \frac{C}{x+3}$ Calculate the value of B.
- (iv) Find the next two terms of the sequence: 1, 3, 7, 15, 31, ---
- (v) If the nth term of the A.P is 3n-1, find its first three terms.
- (vi) Find the 11th term of the geometric sequence: 1+i, 2, $\frac{4}{1+i}$, ---
- (vii) Insert two G. Ms. between 1 and 8.
- (viii) Find the 12^{th} term of the harmonic sequence: $\frac{1}{3}$, $\frac{2}{9}$, $\frac{1}{6}$, ----
- (ix) Find the value of *n* when ${}^{n}P_{4}: {}^{n-1}P_{3} = 9:1$
- (x) Prove the formula for n = 1 and n = 2: $1 + 4 + 7 + --- + (3n 2) = \frac{n(3n 1)}{2}$
- (xi) Calculate (0.97)3 by using binomial theorem.
- (xii) Expand upto 4 terms: $(2-3x)^{-2}$ taking the values of x such that expansion is valid.

P.T.O.

- (i) Find θ , if $\ell = 1.5 \, cm$, $r = 2.5 \, cm$
- (ii) Prove $2\sin 45^\circ + \frac{1}{2}\csc 45^\circ = \frac{3}{\sqrt{2}}$
- (iii) Prove $(\tan \theta + \cot \theta)^2 = \sec^2 \theta \cos ec^2 \theta$
- (iv) Prove $\frac{\tan \alpha + \tan \beta}{\tan \alpha \tan \beta} = \frac{\sin (\alpha + \beta)}{\sin (\alpha \beta)}$
- (v) Prove $\frac{\tan\frac{\theta}{2} + \cot\frac{\theta}{2}}{\cot\frac{\theta}{2} \tan\frac{\theta}{2}} = \sec\theta$
- (vi) Prove $\sin\left(\frac{\pi}{4} \theta\right) \sin\left(\frac{\pi}{4} + \theta\right) = \frac{1}{2}\cos 2\theta$
- (vii) Find the period of $\cos 2x$.
- (viii) Find the area of a $\triangle ABC$, if b = 37, c = 45, $\alpha = 30^{\circ}50'$
- (ix) Prove $R = \frac{abc}{4\Delta}$
- (x) Prove $r r_1 r_2 r_3 = \Delta^2$
- (xi) Prove $\cos(Sin^{-1}x) = \sqrt{1-x^2}$
- (xii) Find the solution of $\sec x = -2$ which lie in $[0, 2\pi]$
- (xiii) Find the values of θ satisfying the equation $2\sin\theta + \cos^2\theta 1 = 0$

SECTION-II

NOTE: - Attempt any three questions.

 $3 \times 10 = 30$

5

COLL

- 5.(a) Show that the set $\{1, w, w^2\}$ when $w^3 = 1$ is an abelian group w.r.t. ordinary multiplication.
- (b) Find n so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be A.M between a and b.
- 6.(a) Find the inverse of the matrix $A = \begin{bmatrix} 2 & 5 & -1 \\ 3 & 4 & 2 \\ 1 & 2 & -2 \end{bmatrix}$ by using column operation.
- (b) A die is thrown twice. What is the probability that the sum of dots shown is 3 or 11.
- 7.(a) Find the condition that $\frac{a}{x-a} + \frac{b}{x-b} = 5$ may have roots equal in magnitude but opposite in signs.
- (b) Use binomial theorem to prove that $1 + \frac{1}{4} + \frac{1.3}{4.8} + \frac{1.3.5}{4.8.12} + --- = \sqrt{2}$
- 8.(a) If $\cot \theta = \frac{5}{2}$ and the terminal arm of the angle is in the I quadrant, then find the value of $\frac{3\sin \theta + 4\cos \theta}{\cos \theta \sin \theta}$
 - (b) Find the value of $\sin 18^\circ$ without using table or calculator. Hint: $5\theta = 2\theta + 3\theta = 90^\circ$
- 9.(a) Prove that $\frac{1}{2rR} = \frac{1}{ab} + \frac{1}{bc} + \frac{1}{ca}$
- (b) Prove that $Tan^{-1}\frac{1}{11} + Tan^{-1}\frac{5}{6} = Tan^{-1}\frac{1}{3} + Tan^{-1}\frac{1}{2}$

13-2019(A)-25000 (MULTAN)