-	-

Inter - (Part-I)-A-2022

Roll No.____ to be filled in by the candidate

(For All Sessions) Group - I Paper Code 6 4 8 3

Chemistry(Objective Type)

Time:20 Minutes

Rup-91-22

Marks:17

NOTE: Write answers to the questions on objective answer sheet provided. Four possible answers A, B, C & D to each question are given. Which answer you consider correct, fill the corresponding circle A, B, C or D given in front of each question with marker or pen ink on the answer sheet provided.

ansv	ver sheet provided.					or per or		
	1.1. Amorphous solids:							
	(A) Have shape melting point		B) Und	Under go clean cleavage when cut with knife				
	(C) Have perfect arrangement of atoms	, (Have small region of orderly arrangement of atom				
2.				8	,			
		02x10 ¹⁹ Coulombs (C) 1.60	23x10 ⁻¹⁹ Coulombs	(n)	1 602x10-19 Kg		
3.			-,		(2)	1.00ZATO Reg		
	(A) $n=2$, $l=1$ (B) $n=1$	1 1=2	C) $n =$	l = 0	(D)	1 2 1 - 2		
4.					(D)	11-2, 1-0		
	(1) O ⁻²							
5.		•	C) B_2	~	(D)	F ₂		
	(.)					200-A		
				ahedral	(D)	Bent		
6.	The net heat change in a chemical reaction is same, whether it is brought about in two or different ways in one or several steps. It is							
	known as.							
	(A) Henry law			s law				
7	(C) Hess's law		D) Law	Law of conservation of energy				
7.			. 1 2					
•		$+I_2 \rightleftharpoons 2HI$ (c	c) $2Nc$	$O_2 \rightleftharpoons N_2 O_4$	(D)	None of these		
8.	Colligative properties are the properties of:							
	(A) Dil solution which behave as nearly idea	l solutions (I		entrated solution wl	nich bel	nave as nearly non-		
	(C) Both (A) and (B)		ideal	solution				
0) None	ofthere				
	(A) Decrease rapidly (B) Decr	, then the voltage.	7 .		(-)			
	24.8.0		C) Does	not change	(D)	Drops to Zero		
10.	If the equation at reaction $2A + B \rightarrow Pr$	A ic procent in love	e eveer	then order of reaction	m ia			
	$rate = K[A]^2$	B A is present in larg	e excess,	men order of reactio	n is.			
	(A) 1 (B) 2	(0	2) 3		(D)	4		
11.								
	(A) 6.02x10 ²³ atoms of oxygen	(E	1.81	10 ²³ molecule of So	'n			
	(C) 6.02x10 ²³ atoms of Sulphur	(D		m atoms of So ₂	-			
12.	A limiting reactant is one which is:		, gru	in anomis of Boy				
	(A) Taken is small amount in gram as compar	red to other reactant (B) Taker	n in lesser amount in	volume	as compared to		
	in grain as compar	od to other reactant		reactant.	Volum	c as compared to		
	(C) Give the maximum amount of product	(D		minimum amount of	nroduc	+		
13.	A filtration process could be very time consum			hich is developed:	produc	•		
	(A) If the paper covers the funnel up to the circ	cumference (B	1	paper has got small	sized no	ores in it		
	(C) If the stem at the funnel in large so that it of	dips into the filtrate (D		paper fits tightly	omea pe			
14.	Solvent extraction is an equilibrium process an	d is controlled by.		,				
	(A) Law of Mass action	(B) Amou	nt of solvent used				
	(C) Partition law	(D) Amou	nt of solute				
15.	Pressure remain constant, at which temperature	the volume of gas will be	come twic	e of what it is at 0°C				
	(A) 546°C (B) 200°C				(D)	273 K		
16.	The order of rate of diffusion of gases NH3, So2	, Cl2 and Co2 is:			(2)	27512		
	(A) $NH_3 > So_2 > Cl_2 > Co_2$	(B)	NH.	$> Co_2 > So_2 > Cl_2$				
*	(c) $Cl_2 > So_2 > Co_2 > NH_3$	(D)		$> Co_2 > Go_2 > Cl_2 > So_2$				
17.	In order to raise the building point at H_2O up to		, 14113	- 002 - 012 > 302	ē.			
	(A) Between 760 torr and 1200 torr							
	(C) 576 torr	(B)		en 200 torr and 760	torr			
	(C) 5/0 tot1	(D)	At any	pressure				

833-11-A-★★-16290

R

The state of the s

to be filled in by the candidate

(For All Sessions)

Chemistry (Essay Type)

Group-I Rope 1-22 Section - I

Marks:68

 $2 \times 8 = 16$

Time: 2:40 Hours

2- Write short answers of any eight parts from the following.

- i. How molecular ions are formed? Give example.
- iii. What is percentage yield? Write its formula.
- v. Define solvent extraction.
- vii. Convert 30° centigrade into Fahrenheit scale.
- ix. Write down any two applications of plasma.
- xi. What are the optimum conditions of temperature and pressure to get maximum yield of ammonia? $N_2 + 3H_2 \rightleftharpoons 2NH_3 + 92.46Kj$
- 3- Write short answers of any eight parts from the following.
- i. What do you mean by Habit of a crystal? Give an example.
- iii. Boiling points of halogens increase down the group. Give the
- v. What do you mean by Line Spectrum?
- vii. Why is the e/m value for positive rays obtained from hydrogen gas 1836 times less than that of cathode rays?
- ix. What are conjugate solutions? Give an example.
- xi. What is auto-catalysis? Give an example.
- 4- Write short answers of any six parts from the following.
- i. Bond distance is the compromised distance between two atoms.
- iii. What are bonding and antibonding molecular orbitals? Give examples.
- v. Define a spontaneous reaction.
- vii. Burning of Candle is a spontaneous process. Justify it.
- ix. Write anodic reaction in alkaline battery.

- ii. Define Mole and Avogadro's Number.
- iv. Write down two phases of chromatography.
- vi. Why fluted filter paper in more useful than ordinary filter paper for filtration?
- viii. What is Joule Thomson effect?
- x. Calculate PH of 10⁻⁴ mole dm⁻³ of Hcl solution.
- xii. State Le-chatelier's principle.

 $2 \times 8 = 16$

- ii. Define molar heat of vaporization and Molar heat of sublimation.
- iv. Ide floats on water. Give the reason.
- What is n+l rule? Give an example.
- viii. State Heisen berg's Uncertainty Principle. Also write its mathematical form.
- x. What are hydrates? How are they formed?
- xii. A catalyst is specific in its action. Give one example to prove it.

 $2 \times 6 = 12$

- ii. π bonds are more diffused than sigma bonds. Justify
- iv. Define non polar covalent bond. Give examples.
- vi. Why the temperature of the system changes during exothermic and endothermic reactions.
- viii. A salt bridge maintains the electrical neutrality in the cell. Give reasons.

Section - II

 $8 \times 3 = 24$

NOTE: Answer any three questions from the following.

- 5.(a) What is the difference between actual yield and theoretical yield? Why actual yield is less than the theoretical yield.
- 6.(a) 250 Cm³ of hydrogen is cooled from 127°C to -27° by maintaining the pressure constant. Calculate the new volume of the gas at this low temperature.
- 7.(a) Explain structure of water and boron trifluoride by hybridization.
- 8.(a) How is the vapour pressure of a liquid measured using Manometric method?
- 9.(a) Explain Beckmann method to determine depression of Freezing point.

- (b) What is spectrum? Explain Atomic Emission and Atomic absorption spectrum.
- (b) Define electrochemical series. Discuss calculation of the voltage of cell, giving one example.

 04+04
- (b) Explain measurement of enthalpy of a reaction by glass calorilmeter.

 04+04
- (b) The solubility of PbF₂ at 25°C is 0.64gdm⁻³.

 Calculate Ksp of PbF₂.
- (b) How order of reaction can be measured by half life method.

R