LHR-01-11-19

Koll No . (To b	e filled in by the candidate) (Academi	ic Sessions 2015 2017 to 2018 2020)
PHYSICS	219-(INTER PART - I)	Time Allowed: 20 Minutes
O.PAPER - I (Objective Type)	GROUP - I	Maximum Marks · 17

PAPER CODE = 6471

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question

	two or more circles will resu	ult in zero mark in that o	question.			
1-1	The ratio of 1 femtome	ter to 1 nanometer is :	:			
	(A) 10 ⁻⁶	(B) 10 ⁶	(C) 10 ⁻⁷ oefficient of viscosity η	(D) 10 ⁸		
2	In the relation $F = 6\pi$	ηrv. Dimensions of co	oefficient of viscosity η	is :		
	(A) $[M^{-1}LT^{-1}]$	(B) $[ML^{-1}T]$	(C) $[M^{-1}L^{-1}T]$	(D) $[ML^{-1}T^{-1}]$		
3	If $\vec{F} = (2\hat{i} + 4\hat{j})N$;	$\vec{d} = (5\hat{i} + 2\hat{j})m$ work	done is :			
	(A) 15 J	(B) 18 J	(C) Zero	(D) -18 J		
4	The sum of two perpen	dicular forces 8 N and	6Nis;			
	(A) 2 N	(B) 14 N	(C) 10 N	(D) $-2 N$		
5	The distance covered by zero:	y a freely falling body	in first 2 seconds, when	its initial velocity was		
	(A) 9.8 m	(B) 39.2 m	(C) 19.6 m	(D) 4.9 m		
6	Value of solar constant	is:				
			(C) $14 kWm^{-2}$			
7	Relation between the sp	eed of disc and hoop	at the bottom of an inclir	ne is :		
	(A) $V_{disc} = \sqrt{\frac{3}{4}} V_{hoop}$	(B) $V_{disc} = \sqrt{\frac{4}{3}} V_{ho}$	v_{op} (C) $V_{disc} = \sqrt{\frac{2}{5}} V_{h}$	$v_{disc} = 2V_{hoop}$		
8	2 revolutions are equal		. 42	A		
·			(0)			
	(A) π rad	(B) ${2}$ rad	(C) 2π rad	(D) 4π rad		
9	9 Terminal velocity V_t is related with the radius r of a spherical object as:					
	(A) $v_t \propto r^2$	(B) $v_t \propto r$	(C) $v_i \propto \frac{1}{r}$	(D) $v_t \propto \frac{1}{r^2}$		
10	The unit of $\frac{1}{2}\rho V^2$ in I	Remoulli's equation is	came as that of :			
	-	1000000001100001	TOTAL MEDICAL POPE			
- 11	(A) Energy	(B) Pressure	(C) Work	(D) Power		
11	Base units of spring cor	istant is:				
10	(A) kg ⁻¹ s ⁻² Speed of sound at 0 °C,	(B) kg ms -	(C) kg ms ⁻²	(D) kgs ⁻²		
12						
	(A) 332 ms ⁻¹			(D) 5500 ms ⁻¹		
13	Two identical waves me	oving in same direction	n produce :			
	(A) Interference	(B) Beats	(C) Stationary waves	(D) Diffraction		
14	Bragg's equation is:					
	(A) $2d\sin\theta = n\frac{\lambda}{2}$	(B) $d \sin \theta = n\lambda$	(C) $d\sin\theta = n\frac{\lambda}{2}$	(D) $d \sin \theta = 2\lambda$		
15	If $f_o = 100 cm$; $f_e = 5$	cm length and magni	fying power of an astron	omical telescope is :		
	(A) 0.05 cm; 20	(B) 95 cm; 20	(C) 20 cm; 500	(D) 105 cm; 20		
16	Root mean square veloc		solute temperature of an			
		(B) $V_{rms} \propto T^2$		(D) $V_{rms} \propto \frac{1}{\sqrt{T}}$		
17	17 If P = Pressure; V = Volume of a gas PΔV represents:					
	(A) Work	(B) Density	(C) Power	(D) Temperature		
	1 \ /		(+)	- /		

41-219-I-(Objective Type) - 16000 (6471)

To be filled in by the candidate) (Academic Sessions 2015 - 2017 to 2018 - 2020) 219-(INTER PART - I) Roll No Maximum Marks: 68 PHYSICS GROUP-I PAPER - I (Essay Type) SECTION - I 16

2. Write short answers to any EIGHT (8) questions :

(i) Write down the two uses of dimensional analysis.

- (ii) What are the characteristics of an ideal standard?
- If $\overrightarrow{A} = 4\hat{i} 4\hat{j}$, what is the orientation of \overrightarrow{A} ?
- (iv) Define resultant vector and component of a vector.
- (v) The magnitude of the sum of two vectors is zero. What are the conditions to get this?
- revolutions and terminates (vi) A car is moving along a circle of radius r. It completes/ its journey at starting point. How much work is done by the car? Explain.
- (vii) How energy is obtained by water waves and what is the source of this energy?
- (viii) Explain the term systolic and diastolic pressure.
 - (ix) Two row boats moving parallel in the water are pulled towards each other. Explain why?
 - between damping and resonance? Explain. (x) Is any relation/
 - (xi) In relation to SHM, explain the equation $y = A \sin(\omega t + \phi)$,
 - (xii) A mass-spring system is vibrating with amplitude 10 cm. Find its K.E. and P.E at equilibrium position, when spring constant is 20 Nm⁻¹.

3. Write short answers to any EIGHT (8) questions :

- (i) What is the difference between uniform velocity and uniform acceleration?
- (ii) Show that time rate of change of momentum of a body equals the applied force.
- (iii) A 1500 kg car has its velocity reduced from 20 ms⁻¹ to 15ms⁻¹ in 3.0 seconds. How large was the average retarding force?
- (iv) Can the velocity of an object reverse the direction when acceleration is constant? If so, give an example.
- (v) Write down the uses of telecommunication satellites.
- (vi) Show that $S = r\theta$ where S = Arc length, r = radius of the circle, $\theta = angle$ in radian.
- (vii) What do you mean INTELSAT VI? What are the frequencies on which it operates?
- (viii) A disc without slipping rolls down a hill of height 10.0 m. If the disc starts from rest at the top of the hill, what is the speed at the bottom?
 - (ix) How the speed of sound change with the density of the medium?
 - (x) Apipe has a length of 1 m. Determine the frequencies of the fundamental, if the pipe is open at both ends. Speed of sound = $340 \, ms^{-1}$
 - (xi) State Doppler Effect. Write down its one application.
 - (xii) How Doppler effect can be used to monitor blood flow?

(Turn Over)

16

	4.	write short answers to any SIX (6) questions:	12
		i) What is Bragg's law? Derive Bragg's equation.	12
	(i	 Explain whether the Young's experiment is an experiment for studying interference or diffraction effects of light. 	
	(ii	How would you manage to get more orders of spectra during a diffraction grating?	
	(IV	Write two differences between angular magnification and resolving power	
	(v	How a single bi-convex lens can be used as a magnifying glass?	
	(vi	Derive Charles' law from kinetic theory of gases.	
) Justify! Work and heat are similar.	
) Show that: Change in entropy is always positive.	
	(ix)	What happens to the temperature of the room when an air-conditioner is left running on table in the middle of the room?	a
		SECTION - II	
N	lote	: Attempt any THREE questions.	1
5	. (a)	Prove that molar specific heat of a gas at constant pressure C_p is greater than	
		molar specific heat at constant volume C_v by an amount equal to universal gas constant R.	1991
	(b)	Suppose, we are told that the acceleration of a particle moving in a circle of radius r with uniform speed v is proportional to some power of r, say r^n , and some power of v, say v^m , determine the powers of r and v.	5
6.	(a)	Explain the method of vector addition by rectangular components.	3
	(b)	A foot ball is thrown upward with an angle of 30° with respect to the horizontal.	5
		to allow a 40 m pass what must be the initial speed of the ball?	3
7.	(a)	Define absolute potential energy. Derive relation for absolute P.E. of a body of mass m.	
	(b)	A stationary wave is established in a string which is 120 cm long and fixed at both ends. The string vibrates in four segments, at a frequency of 120 Hz. Determine its wavelength and the fundamental frequency.	5
8.	(a)	Define SHM. Prove that total energy remains conserved in mass-spring system, oscillating with SHM.	3
	(b)	A gramophone record turntable accelerate from rest to an angular velocity of 45.0 rev min ⁻¹ in 1.60 s. What is its average angular acceleration?	5
9.	(a)	What is compound microscope? Describe its construction and working also calculate its magnification.	3
	(b)	In a double slit experiment the second order maximum accurs at 0, 0.250, Ti	5
		wavelength is 650 nm. Determine the slit separation.	3
		41-219-I-(Essay Type) - 64000	
		, -3 Po) 01000	