Roll N	NO (To be filled in by the condidate)
	HEMATICS (Academic Sessions 2019 – 2021 to 2022 – 2024)
Q.PA	PER – I (Objective Type) 223-1 st Annual-(INTER PART – I) Time Allowed: 30 Mir GROUP – I Maximum Marks: 20 PAPER CODE = 6195 LHZ-11-1-23
lote :	Four possible answers A, B, C and D to each question are given. The choice which you think is cor
	fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or fitwo or more circles will result in zero mark in that question.
1-1	
	(A) $2i$ (B) -1 (C) 0 (D) 1
2	If ${}^{n}P_{2} = 30$ then $n = :$
	(A) 5 (B) 6 (C) 7 (D) 8
3	The modulus of complex number $1-i\sqrt{3}$ is :
	(A) $1+i\sqrt{3}$ (B) $-1+i\sqrt{3}$ (C) 2
4	Arithmetic mean between $\sqrt{2}$ and $3\sqrt{2}$ is:
	(A) $2\sqrt{2}$ (B) $\sqrt{6}$ (C) $\frac{3}{\sqrt{2}}$ (D) $\frac{\sqrt{2}}{2}$
5	If a function $f: A \to B$ is such that Ran $f \subseteq B$ i.e. Ran $f \neq B$ then f is called:
	(A) Into function (B) Onto function
	(C) Injective function (D) Bijective function
6	Partial fractions of $\frac{x^2+1}{(x+1)(x-1)}$ are of the type:
	(A) $\frac{A}{x+1} + \frac{B}{x-1}$ (B) $1 + \frac{A}{x+1} - \frac{B}{x-1}$
	$(C) 1 + \frac{A}{x+1} + \frac{B}{x-1} $ $(D) \frac{Ax+B}{x+1} + \frac{C}{x-1}$
7	Quadratic equation whose roots are 2 and 3:
	(A) $x^2 - 5x + 6 = 0$ (B) $x^2 + 5x + 6 = 0$ (C) $x^2 - 5x - 6 = 0$ (D) $x^2 + 5x - 6 = 0$
8	If A is a square matrix of order 3 then $ KA = :$
	(A) $K A $ (B) $K^3 A $ (C) $K^2 A $ (D) $ A $
9	7 th term of the sequence 2, 6, 11, 17, is :
	(A) 24 (B) 26 (C) 30 (D) 32
10	The trivial solution of homogeneous linear equation is:
11	(A) $(0,0,1)$ (B) $(0,1,0)$ (C) $(1,0,0)$ (D) $(0,0,0)$ Domain of the function $y = \cot x$ is:
- 4	Domain of the function y Col x 15.

(A) $-\infty < x < +\infty$ (B) $-\infty < x < +\infty$, $x \neq \frac{(2n+1)\pi}{2}$, $n \in \mathbb{Z}$

(D) $-\infty < x < +\infty$, $x \neq n\pi$, $n \in Z$

(C) $-1 \le x \le 1$

If A and B are overlapping events then $P(A \cup B) = ---$:

- (A) P(A) + P(B)
- (B) 1 P(A)
- (C) $P(A)+P(B)-P(A\cap B)$ (D) 1-P(B)

The solutions of $\cos ec\theta = 2$ which lie in $[0, 2\pi]$: 13

- (A) $\frac{4\pi}{3}$, $\frac{5\pi}{3}$ (B) $\frac{2\pi}{3}$, $\frac{4\pi}{3}$ (C) $\frac{\pi}{4}$, $\frac{3\pi}{4}$ (D) $\frac{\pi}{6}$, $\frac{5\pi}{6}$

$$\left| \cos \left(\frac{\pi}{2} - \beta \right) \right| = ---$$

- (A) $-\sin \beta$ (B) $\sin \beta$
- (C) $\cos \beta$

15
$$\cos^{-1}(-x) = :$$

16

- (A) $\cos^{-1} x$ (B) $-\cos^{-1} x$ (C) $\pi \cos^{-1} x$ (D) $2\pi \cos^{-1} x$ 2nd term in the expansion of $\left(\frac{a}{2} - \frac{2}{a}\right)^6$ is:
- (B) $\frac{15}{4}a^2$ (C) -20
- (D) $-\frac{3}{8}a^4$

If
$$\sin \theta = \frac{12}{13}$$
 and terminal arm is in quad – I then $\cos \theta = ---$:

- (C) $\frac{5}{13}$ (D) $\frac{-13}{5}$

In any triangle with usual notations
$$\sin \frac{\gamma}{2} = :$$

- (A) $\sqrt{\frac{(s-a)(s-b)}{ab}}$ (B) $\sqrt{\frac{(s-b)(s-c)}{bc}}$ (C) $\sqrt{\frac{(s-c)(s-a)}{ca}}$ (D) $\sqrt{\frac{s(s-c)}{ab}}$

If n is odd in the expansion of
$$(a+x)^n$$
 then number of middle term are:

(A) 2

(B) 3

(C) 4

(D) 1

20 In law of cosine if
$$\beta = 90^{\circ}$$
 then it reduces to :

- (A) $b^2 + c^2 = a^2$ (B) $c^2 + a^2 = b^2$ (C) $a^2 + b^2 = c^2$ (D) $c^2 a^2 = b^2$

1 + R - 11 - 1 - 23 (To be filled in by the candidate)

emic Sessions 2019 - 2021 to 2022 - 2024)

MATHEMATICS

223-1st Annual-(INTER PART – I)

Time Allowed: 2.30 hours Maximum Marks: 80

PAPER – I (Essay Type)

GROUP-I

SECTION - I

2. Write short answers to any EIGHT (8) questions :

16

- (i) Show that $z^2 + \overline{z}^2$ is a real number where $z \in C$
- (ii) Find the multiplicative inverse of 1-2i
- (iii) Write the descriptive and tabular form of $\{x \mid x \in P \land x < 12\}$
- (iv) Define disjunction.
- (v) If a, b are elements of a group G, solve ax = b

(vi) Find x and y if
$$\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} y & 1 \\ -3 & 2x \end{bmatrix}$$

- (vii) Find the cofactors A_{12} and A_{22} if $A = \begin{bmatrix} 1 & -2 & 3 \\ -2 & 3 & 1 \\ 4 & -3 & 2 \end{bmatrix}$
- (viii) Without expansion show that $\begin{vmatrix} 2 & 3 & -1 \\ 1 & 1 & 0 \\ 2 & -3 & 5 \end{vmatrix} = 0$ (ix) Solve the equation $4^{1+x} + 4^{1-x} 10$ (x) Show that
- (x) Show that the product of all the three cube roots of unity is unity.
- (xi) If α , β are the roots of $ax^2 + bx + c = 0$, $\alpha \neq 0$, find the value of $\alpha^2 + \beta^2$
- (xii) The sum of a positive number and its reciprocal is $\frac{26}{5}$. Find the number.

3. Write short answers to any EIGHT (8) questions :

16

- (i) Resolve $\frac{7x+25}{(x+3)(x+4)}$ into partial fraction.
- (ii) If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in A.P., show that $b = \frac{2ac}{a+c}$
- (iii) Sum the series (x-a) + (x+a) + (x+3a) + --- to n terms.
- (iv) Find the 5th term of G.P 3, 6, 12, ----
- (v) If 5 is harmonic mean between 2 and b, find b.
- (vi) Find the sum to n terms of the series whose nth term is $3n^2 + n + 1$
- (vii) Find the value of n when ${}^{n}P_{4}$: ${}^{n-1}P_{3} = 9:1$
- (viii) How many necklaces can be made from 6 beads of different colours?
- (ix) Find the value of n, when ${}^{n}C_{10} = \frac{12 \times 11}{2!}$
- (x) Verify the statement $1+2+4+---+2^{n-1}=2^n-1$ for n=1,2
- (xi) Calculate by means of binomial theorem (0.97)³ upto three decimal places.
- (xii) Expand $(1-x)^{1/2}$ upto three terms.

5

5

5

5

5

5

5

5

- 4. Write short answers to any NINE (9) questions :
 - (i) Convert 21.256° to the D°M'S" form.
 - (ii) Verify $\sin 2\theta = 2\sin \theta \cos \theta$, when $\theta = 45^{\circ}$
 - (iii) Prove the identity $\cos \theta + \tan \theta \sin \theta = \sec \theta$
 - (iv) Prove that $\sin(180^\circ + \alpha)\sin(90^\circ \alpha) = -\sin\alpha\cos\alpha$

(2)

- (v) Prove that $\frac{\cos 11^{\circ} + \sin 11^{\circ}}{\cos 11^{\circ} \sin 11^{\circ}} = \tan 56^{\circ}$
- (vi) Find the values of cos 105°
- (vii) Find the period of $\sin \frac{x}{5}$
- (viii) Find θ , if $\cos \theta = 0.9316$
- (ix) Write any two laws of tangents.
- (x) Find the value of R, if a = 13, b = 14, c = 15
- (xi) Find the value of $\tan \left(\cos^{-1} \frac{\sqrt{3}}{2}\right)$
- (xii) Define trigonometric equation. Give one example.
- (xiii) Find the values of θ , satisfying the equation $2\sin^2\theta \sin\theta = 0$; $\theta \in [0, 2\pi]$

SECTION-II

Note: Attempt any THREE questions.

- 5. (a) Prove that $\begin{vmatrix} b+c & a & a \\ b & c+a & b \\ c & c & a+b \end{vmatrix} = 4abc$
 - (b) Solve the equation $x^4 3x^3 + 4x^2 3x + 1 = 0$
- 6. (a) Resolve into partial fractions $\frac{5x^2 2x + 3}{(x+2)^3}$
 - (b) Find the value of n and r when $^{n-1}C_{r-1}: {}^{n}C_{r}: {}^{n+1}C_{r+1} = 3:6:11$
- 7. (a) If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in G.P., show that the common ratio is $\pm \sqrt{\frac{a}{c}}$
 - (b) Show that $\binom{n}{1} + \binom{n}{3} + \binom{n}{5} + ----+ \binom{n}{n-1} = 2^{n-1}$
- 8. (a) Prove that $\frac{1}{\cos ec\theta \cot \theta} \frac{1}{\sin \theta} = \frac{1}{\sin \theta} \frac{1}{\cos ec\theta + \cot \theta}$
 - (b) Reduce $\sin^4 \theta$ to an expression involving only function of multiples of θ , raised to first power.
- 9. (a) Solve the triangle using first law of tangents and then law of sines a = 36.21, b = 42.09, $\gamma = 40^{\circ}29'$
 - (b) Prove that $\sin^{-1}\frac{5}{13} + \sin^{-1}\frac{7}{25} = \cos^{-1}\frac{253}{325}$