14	$\frac{2\pi}{3}$ radian in de	gree is :		
	(A) 75°	(B) 100°	(C) 110°	(D) 120°
15	$1 - 2\sin^2\alpha = :$			
	(A) $\sin 2\alpha$	(B) $\sin \frac{\alpha}{2}$	(C) $\cos 2\alpha$	(D) $\cos \alpha$
16	The period of tar	ngent function is:		
	(A) $\frac{\pi}{4}$	(B) $\frac{\pi}{2}$	(C) $\frac{\pi}{3}$	(D) π
17	$\sqrt{s(s-a)(s-b)}$	$\overline{s-c)}=:$		
	(A) r	(B) Δ	(C) Δs	(D) r ₁
18	$\frac{\Delta}{s}$ =:			
	(A) r	(B) n	(C) r_2	(D) r ₃
19	$\cos^{-1}\left(\frac{1}{2}\right) = :$	10, 8		
	(A) $\frac{\pi}{3}$	(B) $\frac{\pi}{4}$	(C) $\frac{\pi}{6}$	(D) $\frac{\pi}{2}$
20	Solution of the equ	uation $\sin x = \frac{1}{2}$ in [$[0,2\pi]$ is:	
	(A) $\frac{\pi}{2}$	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{4}$	(D) $\frac{\pi}{3}$

(Academic Sessions 2019 - 2021 to 2022 - 2024)

MATHEMATICS

223-1st Annual-(INTER PART – I)

Time Allowed: 2.30 hours

PAPER – I (Essay Type)

SECTION - I CHR-11-2-23

Maximum Marks: 80

2. Write short answers to any EIGHT (8) questions :

16

- (i) Show that $\forall z \in C$, $(z \overline{z})^2$ is a real number.
- (ii) Simplify $(a+bi)^{-2}$
- (iii) Write the power set of $\{+,-,\times,\div\}$
- (iv) Write the converse, inverse of $\sim p \rightarrow q$
- (v) Just, convert $(A \cup B)' = A' \cap B'$ and $(A \cap B)' = A' \cup B'$ into logical form.
- (vi) If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b
- (vii) Solve the equations $2x_1 3x_2 = 5$ $5x_1 + x_2 = 4$
- (viii) Define cofactor of an element of matrix.
- (ix) Solve the equation $x^3 + x^2 + x + 1 = 0$
- (x) If α , β are the roots of $x^2 px p c = 0$, prove that $(1 + \alpha)(1 + \beta) = 1 c$
- (xi) Discuss the nature of roots $2x^2 5x + 1 = 0$
- (xii) Give the statement of factor theorem.

3. Write short answers to any EIGHT (8) questions:

16

- $\frac{9x-7}{(x^2+1)(x+3)}$ into partial fraction form. (i) Without finding constants, write
- (ii) If $a_{n-3} = 2n-5$, find nth term of A.P.
- (iii) Sum the series 3 + 5 7 + 9 + 11 13 + 15 + 17 19 + --- + 3n terms.
- (iv) If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in G.P, then show that common ratio is $\pm \sqrt{\frac{a}{c}}$
- (v) If 5 is the H.M. between 2 and b, find the value of b.
- (vi) Write formula for $\sum_{k=1}^{n} k$ and $\sum_{k=1}^{n} k^3$
- (vii) If ${}^{11}P_n = 11.10.9$, then find n
- (viii) How many signals can be given by 5 flags of different colours using 3 flags at a time?
- (ix) A die is thrown twice. What is the probability that sum of dots shown is either 3 or 11?
- (x) Using binomial theorem, expand $\left(3a \frac{x}{3a}\right)^3$
- (xi) Find middle term in the expansion of $\left(\frac{x}{2} + \frac{2}{x^2}\right)^{12}$
- (xii) Expand $(1-2x)^{\frac{1}{3}}$ upto first three terms.

4. Write short answers to any NINE (9) questions :

18

- (i) Define angle in the standard position.
- (ii) If $\tan \theta = -\frac{1}{3}$ and the terminal arm of angle is in second quadrant then find $\sec \theta$
- (iii) Find $\sin \theta$ and $\cos \theta$ for $\theta = \frac{19\pi}{3}$
- (iv) If α , β , γ are angles of triangle ABC then prove $\sin(\alpha + \beta) = \sin \gamma$
- (v) Without calculator or table, find cos (75°)
- (vi) Prove that $\tan (45^{\circ} + A) \tan (45^{\circ} A) = 1$
- (vii) Define period of a trigonometric function.
- (viii) Solve the right triangle ABC in which $r = 90^{\circ}$, a = 3.28, b = 5.74
- (ix) By using the law of cosine, write the formula of $\cos\alpha$ and $\cos\beta$
- (x) Solve the triangle ABC if $\beta = 60^{\circ}$, $\gamma = 15^{\circ}$ and $b = \sqrt{6}$
- (xi) Define the principal sin function.
- (xii) Solve the equation $\sin x = \frac{1}{2}$
- (xiii) Solve the equation $\sin x + \cos x = 0$ and find its general solution set.

SECTION - II

Note: Attempt any THREE questions.

- 5. (a) If $A = \begin{bmatrix} i & 1+i \\ 1 & -i \end{bmatrix}$ show that $A = (\overline{A})^t$ is skew-hermitian.

5

5

- (b) When $x^4 + 2x^3 + kx^2 + 3$ is divided by x 2 and remainder is 1, find the value of k.
- 5

6. (a) Resolve into partial fraction $(x-1)^{2}(x+1)$ (b) Prove that ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$

5

7. (a) Find 'n' so that $\frac{a^{n+1} + b^{n+1}}{a^n + b^n}$ may be H.M. between a and b

5

(b) Find (2n+1)th term from the end in expansion of $\left(x-\frac{1}{2x}\right)^{3n}$

- 5
- 8. (a) If $\tan \theta = \frac{1}{\sqrt{7}}$ and the terminal arm of the angle is not in the III quad., find the

value of
$$\frac{\cos ec^2\theta - \sec^2\theta}{\cos ec^2\theta + \sec^2\theta}$$

5

(b) Prove that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$

- 100

5

9. (a) Solve the triangle ABC if a = 7, b = 3, $\gamma = 38^{\circ}13'$

5

(b) Prove that $\tan^{-1} \frac{3}{4} + \tan^{-1} \frac{3}{5} - \tan^{-1} \frac{8}{19} = \frac{\pi}{4}$

5