Roll No. :

.

J. 5. - 50 •

FBD-11-2-23

Objective

Paper Code

Intermediate Part First MATHEMATICS (Objective) Group-II Time: 30 Minutes

6198

Marks: 20

230/13

Q.No.1 You have four choices for each objective type question as A, B, C and D. The choice which you think is correct, fill the relevant circle in front of that question number on computerized answer sheet. Use marker or pen to fill the circles. Cutting or filling two or more circles will result in zero marks in that question. Attempt as many questions as given in objective type question paper and leave other circles blank.acf

S. #	Questions	A	B	С	D
1	If $n = 1$, then value of $n(n - 1)!$ is:	D	2	1	747
2	$\frac{n^3+2n}{3}$ represents an / a:	Real number	Rational number	Irrational number	Integer
3	In the expansion of $(a + b)^7$, the 2nd term is:	a ⁷	7ab6	7a ⁶ b ⁶	7a ⁶ b
4	1°=:	$\frac{180}{\pi}$ radian	$\frac{\pi}{180}$ radian	$\frac{1}{180\pi}$ radian	180π radian
5	$\sin 3x = :$	$4\cos^3 x - 3\cos x$	$3\cos^3 x - 4\cos x$	$3\sin x - 4\sin^3 x$	$4\sin x - 3\sin^3 x$
6	Range of sin x is:	[-1,1]	(-1,1)	[-1,1)	(-1,1]
7	If ABC be any triangle and $\gamma = 90^{\circ}$, then:	$a^2 - c^2 = b^2$	$a^2 + b^2 + c^2 = 0$	$\sqrt{a^2 + c^2} = b^2$	$a^2 + b^2 = c^2$
8	With usual notation area of triangle ABC is:	$\sqrt{(s-a)(s-b)(s-c)}$	$\frac{b}{a\sin\beta}$	ab sin y	$\frac{\arcsin\beta}{2}$
9	$\tan(\tan^{-1}(-1)) = :$	$\frac{\pi}{4}$	$\left \frac{-\pi}{4}\right $	-1	1
10	If $\sin x = \frac{1}{2}$, then $x = :$	$\frac{-\pi}{6}, \frac{-5\pi}{6}$	$\frac{-\pi}{6}, \frac{5\pi}{6}$	$\frac{\pi}{6}, \frac{5\pi}{6}$	$\frac{\pi}{3}, \frac{2\pi}{3}$
11	The set, $S = \{1\}$ is closed under:	Multiplication	Addition	Subtraction	Division
12	p∧~q is a/an:	Absurdity	Tautology	Inverse	Converse
13	If $A = \begin{bmatrix} x & 1 \\ 1 & 1 \end{bmatrix}$ and $ A = 1$, then $x = 1$	3	1	2	0
14	The matrix [a b c d] is a	Square	Row	Unit	Null
15	For what value of K will equation $x^2 - Kx + 4 = 0$ have sum of roots equal to product of roots?	3	2	_4	4
16	Which is a factor of $x^n + a^n$, $n \in O$?	x + a	x – a	x = 0	x - 2a
17	$\frac{p(x)}{x^2+1}$ will be proper fraction if degree of $p(x) = :$		4	2	3
18	No, term of the geometric sequence is:	5	0	2	-1
19	If two numbers are $3\sqrt{5}$ and $5\sqrt{5}$, then arithmetic mean will be:	815	4√5	2√5	6√5
20	⁶ P ₄ =:	3450	361	360	363

1110-XI112336-23000

e's

î

1 4

(vii) Find the period of $\sin \frac{x}{5}$

(viii) In the triangle ABC if a = 36.21 , c = 30.14 , β = 78°10' find angle γ

- (ix) The area of triangle is 2437. If a = 79, c = 97 find angle β .
- (x) Show that $r_2 = s \tan \frac{\beta}{2}$

(xi) Without using table / calculator show that $\cos^{-1}\frac{4}{5} = \cot^{-1}\frac{4}{3}$

(xii) Find the solutions of cosec x = 2, $x \in [0, 2\pi]$

(xiii) Solve $\sin x + \cos x = 0$

SECTION $- II$ Attempt any THREE questions. Each question carries 10 marks.		`
5. (a) Solve the system of linear equations by Cramer's rule: $2x_1 - x_2 + x_3 = 8$ $x_1 + 2x_2 + 2x_3 = 6$ $x_1 - 2x_2 - x_3 = 1$	05	1 22
(b)Solve the equation: $x^2 - \frac{x}{2} - 7 = x - 3\sqrt{2x^2 - 3x + 2}$	05	• • •
6. (a) Resolve into partial fractions: $\frac{2x^4}{(x-3)(x+2)^2}$	05	
(b)Find value of n and r when ${}^{n-1}C_{r-1} : {}^{n}C_{r} : {}^{n+1}C_{r+1} = 3:6:11$	05	
7. (a) The sum of three numbers in A.P is 24 and their product is 440. Find the numbers.(b) If x is so small that its square and higher powers can be neglected, then show that:	05	
$\frac{(1+x)^{\frac{1}{2}}(4-3x)^{\frac{3}{2}}}{(8+5x)^{\frac{1}{3}}} \approx 4\left(1-\frac{5x}{6}\right)$	05	
8. (a) Prove the identity $\frac{\cos\theta + \sin\theta}{\cos\theta - \sin\theta} + \frac{\cos\theta - \sin\theta}{\cos\theta + \sin\theta} = \frac{2}{1 - 2\sin^2\theta}$	05	1.5
(b)Prove that $\frac{\sin\theta + \sin 3\theta + \sin 5\theta + \sin 7\theta}{\cos\theta + \cos 3\theta + \cos 5\theta + \cos 7\theta} = \tan 4\theta$	05	1
9. (a) Prove that $r_3 = s \tan \frac{\gamma}{2}$	05	
(b)Prove that $\sin^{-1}\frac{4}{5} + \sin^{-1}\frac{5}{13} + \sin^{-1}\frac{16}{65} = \frac{\pi}{2}$	05	
1110 3/1102 02000		

1110-XI123-23000

ł