Roll N	o .	('	To be filled in by the	candidate)	
MATI Q.PAP	PER – I (Objective Type) Four possible answers A, E fill that circle in front of	Academic Sessions 2020 – 224-1 st Annual-(INTER GROUP – I PAPER CODE = 61 B, C and D to each question at that question with Marker or	2022 to 2023 - 2025 R PART - I) Time Maxi 195 L HR - I re given. The choice w Pen ink in the answer	Allowed: 30 Minus mum Marks: 20 -24 chich you think is correc	
1-1	Rank of the matrix $\begin{bmatrix} 1 \\ 0 \\ - \end{bmatrix}$	is:	tion.	person on some the	
	(A) 0	(B) 1	(C) 2	(D) 3	
2	The fraction $\frac{x+1}{x^2+2}$ i				
3	(A) Improper fraction The multiplicative invo	(B) Proper fraction	(C) Identity	(D) Mixed	
3			(C) $(-1,0)$	(D) (0,-1)	
4	The roots of $2x^2 - 7x +$				
	(A) Equal	(B) Complex	(C) Irrational	(D) Rational	
5	The value of $(-i)^9$ is:				
	(A) -1	(B) 1	(C) i	(D) - i	
6	If A is a square matrix of order 3 and $ A =2$, then $ 2A =$:				
	(A) 16	(B) 8	(C) 6	(D) 2	
7	The number of elements of the power set of $A = \{ a, \{ b, c \} \}$ are :				
	(A) 2	(B) 4	(C) 6	(D) 8	
8	If $A \subseteq B$, then:				
	(A) $A \cup B = A$	(B) $A \cap B = B$	(C) $B \cup A = A$	(D) $A \cup B = B$	
9	If ω is a cube root of unity, then value of $(1+\omega-\omega^2)^3$ is:				
	(A) 8ω	(B) $8\omega^2$	(C) -8	(D) 8	
10	The converse of ~ p -	q is:			
	(A) $p \rightarrow q$	(B) $p \rightarrow \sim q$	(C) $\sim q \rightarrow p$	(D) $q \rightarrow \sim p$	
11	$\cos 2\theta =$:	(D) 1 2 1 2	(C) 1 2 = 2 a	(D) $2\sin^2\theta - 1$	
10	(A) $1-\sin^2\theta$	$\frac{\text{(B)} \ 1 - 2\sin\theta}{1}$	(C) $1-2\sin^2\theta$	(D) $2\sin^{2}\theta - 1$	
12	The G.M. between $\frac{1}{a}$	and $\frac{1}{b}$ is:			
	(A) $\pm \sqrt{ab}$	(B) $\pm \frac{1}{ab}$	(C) $\pm \sqrt{\frac{1}{ab}}$	(D) ab	

		(2)				
1-13	If $\cos x = -\frac{\sqrt{3}}{2}$, then the	e reference angle is :				
	(A) $\frac{\pi}{3}$	(B) $\frac{\pi}{6}$	(C) $-\frac{\pi}{3}$	(D) $-\frac{\pi}{6}$		
14	If $\sin \theta < 0$ and $\cot \theta > 0$, then θ lies in quadrant:					
	(A) IV	(B) III	(C) II	(D) I		
15	The value of $\sin^{-1}(\cos\frac{\pi}{6})$	$(\frac{\tau}{6})$ is equal to:				
	$A) \frac{\pi}{3}$	(B) $\frac{\pi}{6}$	(C) $\frac{\pi}{2}$	(D) $\frac{3\pi}{2}$		
16	The relation between A ,	G, H is :				
	(A) $G^2 = AH$	(B) $H^2 = AG$	(C) $A^2 = HG$	(D) $A > G < H$		
17	The number of terms in	the expansion of (a+	$-x)^n$ is:			
	(A) n-1	(B) n	(C) $n + 2$	(D) n + 1		
18	$\sqrt{\frac{s(s-c)}{ab}} = :$ (A) $\cos \frac{\alpha}{2}$	• 6	Co			
	(A) $\cos \frac{\alpha}{2}$	(B) $\sin \frac{\alpha}{2}$	(C) $\cos \frac{\gamma}{2}$	(D) $\sin \frac{\gamma}{2}$		
19	A die is thrown, what is the probability to get 3 dots:					
	(A) $\frac{1}{6}$	(B) $\frac{1}{3}$	(C) $\frac{1}{2}$	(D) $\frac{2}{3}$		
20	The period of $\cos \frac{x}{6}$ is	:				
	(A) 2π	(B) 3π	(C) 6π	(D) 12π		

24-224-I-(Objective Type)- 11875 (6195)

. 11.57		
Koll No		To be filled in b
	(Academic Sessions 2020 - 2022	to 2023 - 2025)
A A TOT TYPE A A CONTROL		10 2023 - 2023]

be filled in by the candidate)

MATHEMATICS

224-1st Annual-(INTER PART - I)

Time Allowed: 2.30 hours

PAPER - I (Essay Type)

GROUP - I

Maximum Marks: 80

SECTION - I

148-1-24

Write short answers to any EIGHT (8) questions:

16

- (i) Write the symmetric property and transitive property of equality of the real numbers.
- (ii) Show that $z\bar{z} = |z|^2 \forall z \in C$
- (iii) Find out real and imaginary parts of $(\sqrt{3}+i)^3$
- (iv) Find the modulus of $1-i\sqrt{3}$
- (v) Construct truth table for $(p \land \sim p) \rightarrow q$
- (vi) If a, b are elements of a group G, then show that $(ab)^{-1} = b^{-1}a^{-1}$
- (vii) If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$ and $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b.
- (viii) If A and B are square matrices of the same order, then explain why ir general $(A-B)^2 \neq A^2 - 2AB + B^2$
- (ix) Define skew-hermitain matrix.
- (x) Evaluate $\omega^{28} + \omega^{29} + 1$
- (xi) When $x^4 + 2x^3 + kx^2 + 3$ is divided by x = 2, the remainder is 1. Find the value of k.
- (xii) If α, β are the roots of $x^2 px p c = 0$, prove that $(1+\alpha)(1+\beta) = 1-c$

3. Write short answers to any EIGHT (8) questions :

16

- (i) Define partial fractions (ii) If $\frac{7x+25}{(x+3)(x+4)} = \frac{4}{x+3} + \frac{B}{x+4}$, then find B.
- (iii) Find the number of terms in A.P if $a_1 = 3$; d = 7 and $a_n = 59$
- (iv) If $\frac{1}{a}$, $\frac{1}{b}$, $\frac{1}{c}$ are in G.P., show that common ratio is $\pm \sqrt{\frac{a}{c}}$
- (v) Find the sum of $\frac{9}{4} + \frac{3}{2} + 1 + \frac{2}{3} + \dots = \infty$
- (vi) If 5 is H.M. between 2 and b, then find b.
- (vii) Write $\frac{(n+1)(n)(n-1)}{3.2.1}$ in factorial form.
- (viii) Prove that ${}^{n}P_{r} = n \cdot {}^{n-1}P_{r-1}$
- (ix) Determine probability of getting 2 heads in two successive tosses of balanced coin.
- (x) Show that $8.10^n 2$ is divisible by 6 for n = 1 and n = 2
- (xi) Find the 6th term in the expansion of $\left(x^2 \frac{3}{2x}\right)^{10}$
- (xii) Using binomial theorem, find value of $\sqrt[3]{65}$ correct to three places of decimal.

(Turn Over)

18

4. Write short answers to any NINE (9) questions :

24 0	
(i) Verify $\tan 2\theta = \frac{2 \tan \theta}{1 - \tan^2 \theta}$ for $\theta = 45^\circ$	
(ii) Prove the identity $\frac{1+\cos\theta}{1-\cos\theta} = (\cos ec\theta + \cot\theta)^2$	
(iii) If α , β and γ are the angles of triangle ABC then prove that $\tan(\alpha + \beta) - \tan \gamma = 0$	
(iv) Express as product $\cos 6\theta + \cos 3\theta$	
(v) Prove that $1 + \tan \alpha \tan 2\alpha = \sec 2\alpha$	
(vi) Prove that period of cosine is 2π	
(vii) Find the period of $\cos ec 10x$	
(viii) Draw the graph of the function $y = \cos x$, $xt \left[-\frac{\pi}{2}, \frac{\pi}{2} \right]$	
(ix) Write formula for $\cos \frac{\alpha}{2}$ and $\cos \frac{\gamma}{2}$	
(x) Measure of two sides of a triangle are in the ratio 3: 2 and angle including these sides is 57°. Find the remaining two angles.	
(xi) Define circum centre.	
(xii) Without using calculator / table, show that $2\cos^{-1}\frac{4}{5} = \sin^{-1}\frac{24}{25}$	
(xiii) Solve the trigonometric equation $\cos ec^2\theta = \frac{4}{3}$	
SECTION - II	
Note: Attempt any THREE questions. 5. (a) Show that $\begin{vmatrix} a+\lambda & b & c \\ a & b+\lambda & c \\ a & b & c+\lambda \end{vmatrix} = \lambda^2 (a+b+c+\lambda)$	5
(b) If the roots of the equation $x^2 - px + q = 0$ differ by unity, prove that $p^2 = 4q + 1$	5
6. (a) Resolve $\frac{1}{(x-3)^2(x+1)}$ into partial fractions	5
(b) Find n so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be the A.M. between a and b	5
7. (a) Two dice are thrown. E_1 is the event that the sum of their dots is an	
odd numbers and E_2 is the event that 1 is the dot on the top of the first die.	
Show that $P(E_1 \cap E_2) = P(E_1) \cdot P(E_2)$	5
(b) If $y = \frac{1}{3} + \frac{1.3}{2!} \left(\frac{1}{3}\right)^2 + \frac{1.3.5}{3!} \left(\frac{1}{3}\right)^3 +$ prove that $y^2 + 2y - 2 = 0$	5
2. (2)	
8. (a) Reduce $\sin^4 \theta$ to an expression involving only function of multiple of θ , raised to the first power.	5
(b) Prove that $\Delta = r^2 \cot \frac{\alpha}{2} \cot \frac{\beta}{2} \cot \frac{\gamma}{2}$	5
(b) Hove that $\Delta = r \cot \frac{1}{2} \cot \frac{1}{2} \cot \frac{1}{2}$	3
9. (a) Find the values of all the trigonometric functions of the angle -675° .	5
(b) Prove that $\sin^{-1}\frac{5}{13} + \sin^{-1}\frac{7}{25} = \cos^{-1}\frac{253}{325}$	5
10 20 020	
24-224-I-(Essay Type)-47500	