** **	
Roll	No
IXUII	INU

(To be filled in by the candidate)

MATHEMATICS

(Academic Sessions 2020 - 2022 to 2023 - 2025)

Q.PAPER – I (Objective Type)

224-1st Annual-(INTER PART – I)

Time Allowed: 30 Minutes

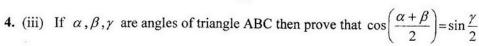
GROUP - II

Maximum Marks: 20

PAPER CODE = 6196

LHR-2-24

Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling two or more circles will result in zero mark in that question.


1-1	If A is a matrix of order 2×3 , then order of $A'A$ is:				
	(A) 3 × 3	(B) 2×3	(C) 3 × 2	(D) 2 × 2	
2	The equation $x(x-1) = x^2 - x$ is :				
	(A) Conditional	(B) Identity	(C) Exponential	(D) Radical	
3	The multiplicative inv	erse of -i is:			
	(A) (1,-1)	(B) $(0, -1)$	(C) (0,1)	(D) (1,0)	
4	If ω is a cube root of unity, then $(1+\omega+\omega^2)^8 = :$				
	(A) 0	(B) 256	(C) 256ω	(D) $256\omega^2$	
5	Which of the following sets has closure property w.r.t. addition:				
	(A) {1}	(B) { 0 }	(C) {0,1}	(D) {1,-1}	
6	If $ A = 9$, then $ A^t $	is:			
	(A) 81	(B) $\frac{1}{9}$	(C) –9	(D) 9	
7	The converse of $p \rightarrow$	q is :			
		(B) $\sim q \rightarrow p$	(C) $q \rightarrow p$	(D) $p \rightarrow \sim q$	
8	If $A = \{\}$, then the power set of A is:				
	(A) φ	(B) {0}	(C) { }	(D) $\{\phi\}$	
9	If $4^{1+x} = 2$, then $x = :$				
	(A) 0	(B) -2	(C) $-\frac{1}{2}$	(D) $\frac{1}{2}$	
10	If $A \cap B = A$, then:				
	(A) $B \subseteq A$	(B) $A \subseteq B$	(C) $A \cup B = A$	(D) $B \cup A = A$	
11	$\sin(270^{\circ} + \theta) = :$				
	(A) $\sin \theta$	(B) $\cos \theta$	(C) $-\cos\theta$	(D) $-\sin\theta$	
12	Which cannot be the term of a G.P.:				
	(A) 1	(B) -1	(C) 0	(D) i	

T	T				
1-13	If $\sin x = -\frac{\sqrt{3}}{2}$, then the reference angle is:				
	$(A) -\frac{\pi}{6}$	(B) $\frac{\pi}{6}$	(C) $-\frac{\pi}{3}$	(D) $\frac{\pi}{3}$	
14	Which angle is quadrantal angle:				
	(A) 45°	(B) 60°	(C) 120°	(D) 270°	
15	With usual notation	$a, \frac{abc}{4R} = :$			
	(A) r	(B) r ₁	(C) Δ	(D) r_2	
16	H.M. between 3 a	nd 7 is:			
	(A) 5	(B) √21	(C) $\pm\sqrt{21}$	(D) $\frac{21}{5}$	
17	The number of terms in the expansion of $(a+x)^n$ is				
	(A) n-1	(B) n	(C) $n+2$	(D) $n + 1$	
18	The period of $\cos 2x$ is :				
	(Α) π	(B) 2π	(C) 4π	(D) $\frac{\pi}{2}$	
19	If $r = n$, then ${}^{n}C_{r} =$: 0			
	(A) 0	(B) 1	(C) n	(D) n!	
20	$\sin^{-1}(0) + \cos^{-1}(0) =$	0,			
	(A) 0	(B) $\frac{\pi}{2}$	(C) $\frac{\pi}{3}$	(D) $\frac{\pi}{4}$	

25-224-II-(Objective Type)- 11750 (6196)

	(Tol	be filled in by the candidate)
лl No	(Academic Sessions 2020 – 2022 to 20	23 – 2025)
MATHEMAT	TICS 224-1 st Annual-(INTER PART –	Time Allowed: 2.30 hours Maximum Marks: 80
PAPER – I (I		
	SECTION - I	LHR-2-24
	ort answers to any EIGHT (8) questions:	-
	Show that $z^2 \bar{z}^2$ is a real number.	
	Find the modulus of $1-i\sqrt{3}$	
(iii)	Simplify by justifying each step $\frac{\frac{1}{4} + \frac{1}{5}}{\frac{1}{4} - \frac{1}{5}}$	
(iv)	Check the closure property w.r.t. addition and mu	ultiplication for the set $\{0, -1\}$
	Determine whether the statement $p \land \sim p$ is taut	tology or not.
	Define semi-group.	
(vii)	If $A = \begin{bmatrix} 1 \\ 1+i \\ i \end{bmatrix}$, find $A(\overline{A})^t$	Colu
(viii)	Define reduced echelon form of a matrix, with ex	xample.
(ix)	If $A = \begin{bmatrix} 2 & -1 \\ 3 & 1 \end{bmatrix}$, verify that $(A^{-1})^t = (A^t)^{-1}$	
(\mathbf{x})	Discuss nature of roots of $9x^2 - 12x + 4 = 0$	
(xi)	Solve the equations $x^2 + y^2 = 25$, $2x^2 + 3y^2$	= 6
(xii)	Find the condition that one root of $x^2 + px + q = 0$	= 0 is square of other.
3. Write sh	hort answers to any EIGHT (8) questions :	16
(i)	Define proper rational fraction.	p. C
(ii)	For the identity $\frac{1}{(x-1)(2x-1)(3x-1)} = \frac{A}{x-1} + \frac{A}{x-1}$	$+\frac{B}{2x-1} + \frac{C}{3x-1}$ calculate the value of A.
	Find the next two terms of 1, 3, 7, 15, 31,	
(iv)	the table A.D. in which	$a_1 = 11$, $a_n = 68$, $d = 3$
(v)	Find three A.Ms between $\sqrt{2}$ and $3\sqrt{2}$.	
(vi)	Find the 12^{th} term of $1 + i$, $2i$, $-2 + 2i$,	
(vii)	Show that ${}^{16}C_{11} + {}^{16}C_{10} = {}^{17}C_{11}$	
(viii)	Evaluate $^{12}C_3$	
(ix)	What is sample space and events?	
(x)	State principle of mathematical induction.	
	Calculate (9.98) ⁴ by means of binomial theorem	em.
(xii)	Prove that $n! > 2^n - 1$ for $n = 4.5$	40
4. Write s	short answers to any NINE (9) questions:	18
(i)	What is length of an arc intercepted on a circle central angle 45°?	of radius 14 cm by the arms of a
(ii)) Convert 54°45' into radians.	(T) (O)

(Turn Over)

- (iv). Find the value of $\cos \frac{\pi}{12}$
- (v) Express $\sin(x+30^\circ) + \sin(x-30^\circ)$ as a product.
- (vi) Define periodic function and period of trigonometric function.
- (vii) Find period of $\cos \frac{x}{6}$
- (viii) Draw the graph of $y = \sin x$ from 0 to π .
- (ix) State law of sines.
- (x) If sides of triangle are 16, 20, 23, find its greatest angle.
- (xi) Show that $r_1 = s \tan \frac{\alpha}{2}$
- (xii) Find value of $\cos \left(\sin^{-1} \frac{1}{\sqrt{2}} \right)$
- (xiii) Show that $\tan \left(\sin^{-1} x\right) = \frac{x}{\sqrt{1-x^2}}$

SECTION - II

Note: Attempt any THREE questions.

5. (a) Solve the system of equations by Cramer's rule

$$2x + 2y + z = 3$$

$$3x - 2y - 2z = 1$$

$$5x + y - 3z = 2$$

- (b) If α, β roots of $x^2 3x + 5 = 0$ form the equation whose roots are $\frac{1 \alpha}{1 + \alpha}$ and $\frac{1 \beta}{1 + \beta}$
- 6. (a) Resolve $\frac{x^4}{1-x^4}$ into partial fractions 5
 - The sum of an infinite geo-metric series is 9 and the sum of the squares of its terms is $\frac{81}{5}$. Find the series.
- 7. (a) Find the values of n and r when $^{n-1}C_{r-1}: {}^{n}C_{r}: {}^{n+1}C_{r+1} = 3:6:11$ 5
 - (b) If x is so small that its cube and higher powers can be neglected, then show that : $\sqrt{\frac{1-x}{1+x}} \approx 1-x+\frac{x^2}{2}$ 5
- 8. (a) Reduce $\cos^4 \theta$ to an expression involving only function of multiples of θ , raised to the first power.
 - (b) Prove that $r_3 = 4R \cos \frac{\alpha}{2} \cos \frac{\beta}{2} \sin \frac{\gamma}{2}$ 5
- 9. (a) Show that the area of a sector of a circular region of radius r is $\frac{1}{2}r^2\theta$, where θ is the circular measure of the central angle of the sector.
 - (b) Prove that $\sin^{-1} \frac{1}{\sqrt{5}} + \cot^{-1} 3 = \frac{\pi}{4}$ 5

5

5

5