4									
Roll No	о	LH12-4.	1-1	11-18	(To	be filled in by th	ne cano	lidate)	
Roll No LHQ-G1-11-18 (To be filled in by the candidate) MATHEMATICS (Academic Sessions 2014 – 2016 to 2017 – 2019) Q.PAPER – I (Objective Type) 218-(INTER PART – I) Time Allowed: 30 Minutes									
Q.PAP	EK - 1	(Objective Typ	be)	GROUP -	1 - 1)	1 11	ne Am	owed: 30 Minutes n Marks: 20	
				PAPER CODE =					
Note: Four possible answers A, B, C and D to each question are given. The choice which you think is correct, fill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling									
	two or more circles will result in zero mark in that question.								
1-1	The set { 0, 1 } is closed under:								
	(A)	Addition	(B)	Multiplication	(C)	Division	(D)	Subtraction	
2	If A	and B are two	sets,	then $A - B = :$					
	(A)	$A \cup B^c$	(B)	$(A \cup B)^c$	(C)	$A \cap B^c$	(D)	$(A \cap B)^c$	
3	A sa	uare matrix A	is sk	ew symmetric if	$t^t = :$				
				50.		-	(D)	A'	
4	(A) $-A$ (B) A (C) A (D) A' If order of a matrix A is m × n, then order of A' is :								
	(A)	m×n	(B)	m × m	(C)	n×m	(D)	$n \times n$	
5	Sum of roots of quadratic equation $ax^2 + bx + c = 0$ is:								
	(A)	<u>a</u>	(B)	<u>b</u>	(C)	c	(D)	_ <u>b</u>	
	(21)	b	(1)	а	(0)	a	(D)	a	
6	Product of all fourth roots of unity is ?								
	(A)	1	(B)	0	(C)	1	(D)	;	
7	()				(0)	*	(D)	•	
,	The f	The fraction $\frac{3x^2+5}{x+1}$ is							
	x+1 (A) Proper fraction (D) Polymorphis								
	(A) Proper fraction (B) Polynomial								
	(C) Partial fraction (D) Improper fraction								
8	Geon	netric mean be	tweer	n-2 and 8 is:					
	(A)	4	(B)	± 4	(C)	8	(D)	± 4i	
9	The	10th term of 1	1	$\frac{1}{8}$, is:					
	The .	2	' 5 '	8'					
	(A)	30	(B)	28	(C)	1	(D)	1	
	()		(~)		(0)	29	(2)	32	
10	The v	value of $\frac{4!}{0!}$ is	::						
		0!							
	(A)	24	(B)	4	(C)	0	(D)	Infinity	
11	If A	and B are m	utual	ly exclusive events	, then	$P(A \cup B) = :$			
	(A) $P(A) \cup P(B)$ (B) $P(A) + P(B)$								
				(D) $P(A) - P(B)$					
	(-)	_ ()		(-) - (-) - (-)					

- $4^n > 3^n + 4$ is true for integral values of n = :
 - (A) 1
- (B) $n \le 1$

- (C) 0
- (D) $n \ge 2$

- 13 The 2nd term in expansion of $\left(1 - \frac{1}{3}x\right)^{-1}$ is:

 - (A) $\frac{1}{3}x$ (B) $-\frac{1}{3}x$

- (C) 3x
- (D) 2x
- 14 If $\sin \theta < 0$ and $\cot \theta > 0$, then θ lies in quadrant:
 - (A) 1
- (B) 2

- (C) 3
- 15 If α, β, γ are angles of triangle then $\tan(\alpha + \beta) + \tan \gamma = \frac{1}{2}$
 - (A) 1
- (B) 0

- (C) 2
- (D) 1

- 16 Period of $\cos\left(\frac{x}{2}\right) = :$
- (B) $\frac{\pi}{2}$

- (D) 4π
- 17 Radius of escribed circle opposite to vertex 'c' of the triangle is :

 - (A) $\frac{\Delta}{s}$ (B) $\frac{\Delta}{s-a}$
- (C) $\frac{\Delta}{s-c}$ (D) $\frac{\Delta}{s-b}$
- 18 The value escribed circle $r_1 = :$
 - (A) Δ (B) Δ

- (C) $\frac{\Delta}{s}$
- (D) $\frac{\Delta}{a}$

- 19 The value of $\cos(\tan^{-1} 0) = :$
 - (A) 1
- (B) 1

- (C) 0
- (D) ∞

- 20 If $\cos x = -\frac{1}{2}$, then reference angle is:
 - (A) $\frac{\pi}{6}$
- (B) $-\frac{\pi}{3}$

- (C) $\frac{\pi}{3}$
- (D) $\frac{\pi}{2}$

MATHEMATICS PAPER – I (Essay Type) 218-(INTER PART - I)

GROUP - I

Time Allowed: 2.30 hours Maximum Marks: 80

SECTION - I

2. Write short answers to any EIGHT (8) questions :

- (i) Simplify $(-1)^{-21}$
- (ii) Express the complex number $(1+i\sqrt{3})$ in polar form.
- (iii) Find the multiplicative inverse of (-4,7)
- (iv) Is there any set which has no proper subset? If so name that set.
- (v) Write the converse and contrapositive of $\sim q \rightarrow \sim p$
- (vi) For $A = \{1, 2, 3, 4\}$, find the relation in A for $R = \{(x, y) | x + y < 5\}$, also write the range of R.
- (vii) If $A = \begin{bmatrix} 1 & 2 \\ a & b \end{bmatrix}$, $A^2 = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$, find the values of a and b.
- (viii) Find the multiplicative inverse of the matrix $\begin{bmatrix} 2i & i \\ i & -i \end{bmatrix}$
- (ix) Show that $\begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ yz & zx & xy \end{vmatrix} = \begin{vmatrix} 1 & 1 & 1 \\ x & y & z \\ x^2 & y^2 & z^2 \end{vmatrix}$
- (x) Solve the equation $x^4 6x^2 + 8 = 0$
- (xi) Show that $x^3 y^3 = (x y)(x \omega y)(x \omega^2 y)$, ω is complex cube root of unity.
- (xii) If α , β are the roots of $3x^2 2x + 4 = 0$, then find the value of $\frac{1}{\alpha^3} + \frac{1}{\beta^3}$

3. Write short answers to any EIGHT (8) questions :

- (i) Resolve $\frac{x^2+1}{(x+1)(x-1)}$ into partial fractions.
- (ii) If $a_{n-2} = 3n 11$, find the nth term of the sequence
- (iii) If 5, 8 are two A.Ms between a and b, find a and b
- (iv) Which term of the A.P. 5, 2, -1, ---- is -85?
- (v) Insert two G.Ms between 1 and 8.
- (vi) If 5 is the harmonic mean between 2 and b, find b
- (vii) Define fundamental principle of counting.
- (viii) Find the number of the diagonals of a 6-sided figure.
- (ix) What is probability that a slip of numbers divisible by 4 are picked from the slips bearing number 1, 2, 3, ---- 10?
- (x) State the principle of mathematical induction.
- (xi) If x is so small that its square and higher powers can be neglected, then show that $\frac{1-x}{\sqrt{1+x}} = 1 \frac{3}{2}x$
- (xii) Find the 6th term in the expansion of $\left(x^2 \frac{3}{2x}\right)^{10}$

16

16

LHR-G1-11-18 4. Write short answers to any NINE (9) questions :

- (i) An arc subtends an angle of 70° at the center of a circle and its length is 132 m. Find the radius of the circle.
- (ii) Define coterminal angles.
- (iii) Verify $\sin^2 \frac{\pi}{6} + \sin^2 \frac{\pi}{2} + \tan^2 \frac{\pi}{4} = 2$
- (iv) If α, β, γ are angles of a triangle \triangle ABC, then prove that $\tan(\alpha + \beta) + \tan \gamma = 0$
- (v) Find the value of sin 105°, without calculator.
- (vi) Prove that $\cot \alpha \tan \alpha = 2 \cot 2\alpha$
- (vii) Write the domain of $y = \sin x$
- (viii) A vertical pole is 8m high and the length of its shadow is 6m. What is the angle of elevation of the sun at that moment?
- (ix) Find α and β in the triangle \triangle ABC in which a=7, b=7, c=9
- (x) Find the area of the triangle \triangle ABC in which a = 200, b = 120, $\gamma = 150^{\circ}$
- (xi) Evaluate without using calculator $\tan^{-1} \left(\frac{1}{\sqrt{2}} \right)$
- (xii) Solve the equation $2\sin x 1 = 0$
- (xiii) Find the solution of the equation which lie in interval $[0, 2\pi]$: $\sec x = -2$

SECTION - II

Note: Attempt any THREE questions.

- 5. (a) Consider the set $S = \{1, -1, i, -i\}$. Set up its multiplication table and show that the set S is an abelian group under multiplication.
 - (b) If $A = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 2 & 1 \\ 1 & -1 & 1 \end{bmatrix}$ then find A^{-1} by using adjoint of the matrix. 5
- (a) Solve the system of equations : x + y = a + b; and $\frac{a}{x} + \frac{b}{v} = 2$ 5
 - (b) Resolve $\frac{9x-7}{(x^2+1)(x+3)}$ into partial fractions.
- 7. (a) Find four numbers in arithmetic sequence (A.P.) whose sum is 32 and the sum of whose squares is 276.
 - (b) Use binomial series to show that $1 + \frac{1}{4} + \frac{1 \times 3}{4 \times 8} + \frac{1 \times 3 \times 5}{4 \times 8 \times 12} + \dots = \sqrt{2}$ 5
- 8. (a) If $\csc\theta = \frac{m^2 + 1}{2m}$ and $m > 0 \left(0 < \theta < \frac{\pi}{2} \right)$, find the values of the all remaining trigonometric ratios.
 - (b) Prove that $\sin \frac{\pi}{9} \sin \frac{2\pi}{9} \sin \frac{\pi}{3} \sin \frac{4\pi}{9} = \frac{3}{16}$ without using calculator. 5
- 9. (a) With usual notations, prove that $r_1 = \frac{\Delta}{a}$ 5
 - (b) Prove that $\sin^{-1}\frac{3}{5} + \sin^{-1}\frac{8}{17} = \sin^{-1}\frac{77}{85}$ 5

18

5

5

5

5