Roll No	LHR-	92-11-18	(To be filled in b	y the candidate)			
MATH	IEMATIGS	(Academic Session	s 2014 – 2016 to 2017 –	2019)			
Q.PAP	ER – I (Objective Ty	rpe) 218-(INTER		Time Allowed: 30 Minutes			
		PAPER CO		Maximum Marks: 20			
Note :	Four possible answers			oice which you think is correct,			
Note:	fill that circle in from	nt of that question with M	Marker or Pen ink in the a	nswer-book. Cutting or filling			
	two or more circles w	ill result in zero mark ir	that question.				
1-1	$2 \sin\left(\frac{P+Q}{2}\right) \cos\left(\frac{P-Q}{2}\right) =$						
	(A) $\sin P + \sin Q$ (B) $\sin P - \sin Q$						
	(C) $\cos P + \cos Q$	(D) $\cos P$	$-\cos Q$				
2	With usual notation ${}^{n}C_{0} = :$						
	(A) 1	(B) 0	(C) n	(D) 2			
3	$\sin^{-1} A - \sin^{-1} =$:					
	(A) $\sin^{-1}(A\sqrt{A})$	$\overline{B^2}$ $\sqrt{1-A^2}$)	(B) $\sin^{-1}(A\sqrt{1-B})$ (D) $\cos^{-1}(A\sqrt{1-B})$	$B^2 + B\sqrt{1-A^2}$			
	(C) (QS 1 (21)	B^2 $\sqrt{1-X^2}$)	(D) $\cos^{-1}(A\sqrt{1-I})$	$\frac{\sqrt{2}}{2} + B\sqrt{1 - A^2}$			
4	Values of higon	e unctils of t	he quadrantal angle 76	o are same as of the			
	angle:	F Ex					
	(A) 30°	(B)	(C) 60°	(D) 90°			
5		1.3					
	Solution of $\cot \theta = \frac{1}{\sqrt{3}}$ in quadrant – III						
	5π	7π	π	(D) π			
	(A) $\frac{3k}{4}$	(B) $\frac{\pi}{6}$	3				
-6	The sum of coefficients in the binomial parsion when $n = 4$ is:						
	(A) 1	(B) 8	(C) 16	(D) 32			
7	With usual notation the "circum-radius" R =:						
,							
	$(A) \frac{\Delta}{}$	(B) $\frac{abc}{4\Delta}$	(C) $\frac{\Delta}{abc}$	(D) $\frac{3}{\Delta}$			
-	D 11 6 2 : 2		авс	Δ			
8	Period of $3\sin 2x$	1S :		π			
	(A) 6π	(B) 2π	(C) π	(D) $\frac{\pi}{2}$			
9	Which one is divisible by 2 for all positive integral values of n:						
			(C) $5^n - 2^n$	(D) $n^2 + n$			
10	$(A) n^3 - n$	$\frac{(B) \ 5^n - 1}{(B - \gamma)}$	(C) 3 - 2	(D) " 1"			
10		$\tan \left[\frac{p-\gamma}{2} \right]$					
	In law of tangents	$\frac{2}{(R+n)} = :$					
		$\frac{(B) 5^n - 1}{\sin\left(\frac{\beta - \gamma}{2}\right)} = :$					
		(-)		L a			
	(A) $\frac{a-b}{a-b}$	(B) $\frac{c-a}{c+a}$	(C) $\frac{c-b}{c+b}$	(D) $\frac{b-c}{b+c}$			
11	a+b			<i>D</i> + <i>C</i>			
11	If ' ω ' be the cube root of unity, then $\omega^2 = :$						
	(Δ) $-1-\sqrt{3}i$	(B) $\frac{1-\sqrt{3}i}{2}$	(C) 1	(D) $1+\sqrt{3}i$			
	(A) $\frac{-1-\sqrt{37}}{2}$	(B) —	(C) 1	(D) $\frac{1+\sqrt{37}}{2}$			

	,				
1-12	Multiplicative inverse o	f comp	lex number - 3	-5i is:	

(A)
$$\frac{3}{34} + \frac{5}{34}i$$
 (B) $\frac{-3}{34} - \frac{5}{34}i$

(B)
$$\frac{-3}{34} - \frac{5}{34}i$$

(C)
$$\frac{-3}{34} + \frac{5}{34}i$$

(C)
$$\frac{-3}{34} + \frac{5}{34}i$$
 (D) $\frac{-3}{\sqrt{34}} + \frac{5}{\sqrt{34}}i$

Simplify form of
$$\frac{10!}{7!}$$
 is equal to :

If matrix
$$\begin{bmatrix} x & 4 \\ 2 & 8 \end{bmatrix}$$
 is singular then $x = :$

(B)
$$-1$$

(B)
$$\pm 8$$

(C)
$$\frac{32}{5}$$

Roots of the equation
$$x^2 - 7x + 10 = 0$$
 are :

(A)
$$(2,-5)$$

$$(B) (-2,5)$$

$$(C)$$
 $(2,5)$

(D)
$$(-2, -5)$$

(A)
$$(2,-5)$$
 (B) $(-2,5)$ (C) $(2,5)$ (D) $(-2,-5)$
17 Formula for the sum of terms of A.P. (Arithmetic progression):

$$(A) \quad a_n = a_1 + (n_1)$$

(A)
$$a_n = a_1 + (n-1)$$
 (B) $s_n = \frac{n}{2}(a_1 + a_n)$

(C)
$$s_n = \frac{a_1(1-r^n)}{1-r}$$
 (D) $s = \frac{a_1(1-r^n)}{1-r}$

(D)
$$s = 1$$

18 Tabular form of
$$\{x \mid x \in E : 4 \le x\}$$

(D)
$$\{4,6\}$$

Partial fractions of
$$\frac{1}{(x^2+1)(x-1)}$$
 are of the form :

$$(A) \quad \frac{A}{x^2+1} + \frac{B}{x-1}$$

(A)
$$\frac{A}{x^2+1} + \frac{B}{x-1}$$
 (B) $\frac{A}{x+1} + \frac{B}{(x^2+1)} + \frac{C}{x-1}$

(C)
$$\frac{A}{x^2+1} + \frac{Bx+C}{x-1}$$
 (D) $\frac{Ax+B}{x^2+1} + \frac{C}{x-1}$

(D)
$$\frac{Ax+B}{x^2+1} + \frac{C}{x-1}$$

(A)
$$A^t = -A$$
 (B) $A^t = A$

(B)
$$A^t = A$$

(C)
$$(\overline{A})^t = A$$

(C)
$$(\overline{A})^t = A$$
 (D) $(\overline{A})^t = -A$

(To be filled in by the candidate) essions 2014 - 2016 to 2017 - 2019) **MATHEMATICS** 218-(INTER PART - I) Time Allowed: 2.30 hours PAPER - I (Essay Type) GROUP - II Maximum Marks: 80 SECTION - I 2. Write short answers to any EIGHT (8) questions : 16 (i) Does the set $\{1,-1\}$ close w.r.t. : (a) addition (b) multiplication (ii) Find multiplicative inverse of the complex number (-4, 7)(iii) If $z = 1 - i\sqrt{3}$, then find |z|(iv) Write inverse and contrapositive of $q \rightarrow p$ (v) If $A = \{a, b, c\}$, then write all subsets of A and find P(A)(vi) Show that set of natural number is not a group w.r.t. addition. (vii) Define diagonal matrix with an example. (viii) If $A = \begin{bmatrix} 2 & 1 \\ 6 & 3 \end{bmatrix}$, then find A^{-1} (ix) Without expansion show that $\begin{vmatrix} 6 & 7 & 8 \\ 3 & 4 & 5 \\ 2 & 3 & 4 \end{vmatrix} = 0$ (x) Find four 4th roots of unity. (xi) If α , β are roots of $x^2 - px - p - c = 0$, show that $(1 - \alpha)(1 + \beta)$ (xii) Find quadratic equation whose roots are 2ω , $2\omega^2$, where ω is cube roots of unity. 3. Write short answers to any EIGHT (8) questions 16 (i) Resolve $\frac{x^2+1}{(x+1)(x-1)}$ into partial fractions. (ii) Find the indicated term of the sequence 2, 6, 11, 17, $\alpha_7 = ?$ (iii) Sum the series upto n-terms $\frac{1}{1-\sqrt{x}} + \frac{1}{1-x} + \frac{1}{1\pm\sqrt{x}}$ (iv) Insert two G.Ms between 1 and 8. (v) Find the sum of the infinite geometric series $\frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{8}$ (vi) Find the 12th term of the harmonic sequence $\frac{1}{3}$, $\frac{2}{9}$, $\frac{1}{6}$, --(vii) Evaluate $\frac{15!}{15!(15-15)!}$ (viii) Find the value of n, when $\frac{12 \times 11}{2!} = {}^{n}C_{10}$ (ix) There are 5 green and 3 red balls in a box, one ball is taken out, find the probability that the ball drawn is green. (x) Find the number of the diagonals of a 6-sided figure. (xi) Find the term involving x^4 in the expansion of $(3-2x)^7$. (xii) Using binomial theorem find the value of (1.03) upto three decimal places. 4. Write short answers to any NINE (9) questions : 18 (i) Define angle in the standard position with figure. (ii) Find x, if $\tan^2 45^\circ - \cos^2 60^\circ = x \sin 45^\circ \cos 45^\circ \tan 60^\circ$ (iii) Prove that $\frac{1}{1+\sin\theta} - \frac{1}{1-\sin\theta} = 2\sec^2\theta$

(Turn Over)

- (v) Prove that $\tan\left(\frac{\pi}{4} \theta\right) + \tan\left(\frac{3\pi}{4} + \theta\right) = 0$
- (vi) Express $\sin(x+45^\circ)\sin(x-45^\circ)$ as sum or difference.
- (vii) Find the period of $\cos \frac{x}{6}$
- (viii) Find the area of triangle $\triangle ABC$, in which b = 37, c = 45 and $\alpha = 30^{\circ}50'$
- (ix) Prove that $r r_1 r_2 r_3 = \Delta^2$ (Using usual notation)
- (x) Prove that $(r_1 + r_2) \tan \frac{\gamma}{2} = c$ (Using usual notation)
- (xi) Find domain and range of $y = \cos^{-1} x$
- (xii) Solve the equation $\sin x = \frac{1}{2}$
- (xiii) Find solutions of $\cot \theta = \frac{1}{\sqrt{3}}$ which lie in $[0, 2\pi]$

SECTION - II

Note: Attempt any THREE questions.

- (a) Convert the following theorem to logical form and prove it by constructing truth table $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
 - (b) Solve the following system by reducing their augmented matrices to the echelon form:

$$x + 2y + z = 2$$
$$2x + y + 2z = -1$$

$$2x + 3y - z = 9$$

6. (a) If α, β are the roots of the equation $ax^2 + bx + c = 0$ then find the equation whose

7. (a) For what value of n, $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ is the positive geometric mean (G.M.)

between a and b

- 5 5 (b) If x is so small that its square and higher powers can be neglected, then show that :
 - $\frac{(1-x)^{\frac{1}{2}}(9-4x)^{\frac{1}{2}}}{1} \approx \frac{3}{2} \frac{61}{48}x.$
- 8. (a) If $\csc\theta = \frac{m^2 + 1}{2m}$ and m > 0, $\left(0 < \theta < \frac{\pi}{2}\right)$, find the values of the remaining trigonometric ratios.
 - (b) Prove without using calculator that $\cos 20^{\circ} \cos 40^{\circ} \cos 60^{\circ} \cos 80^{\circ} = \frac{1}{16}$
- 9. (a) The sides of a triangle are $x^2 + x + 1$, 2x + 1 and $x^2 1$. Prove that the greatest angle of the triangle is 120°.
 - (b) Prove that $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$

5

5

5

5

5