BILLETING MANNELHICUM MINNELLI STEPPENING			1 Alliuai 2024	WARKS: 20	
		OBJECTIVE			
N	OTE: You have four	choices for each objecti	ive type question as A , B , (C and D . The choice which	
見	you think is co	rrect, fill that circle in fr	ont of that question numbe	r. Use marker or nen to fil	
	the circles. Cut	ting or filling two or mor	e circles will result in zero ma	arks in that question.	
	ESTION NO. 1		DGR-1-	-24	
1	I deceman form of the	+1) (n) (n-1) is			
	(A) $\frac{(n+1)!}{(n-2)!}$ (B) $\frac{1}{(n-2)!}$	$\frac{(n-2)!}{(n+1)!}$ (C) $\frac{(n+1)!}{n!}$	(D) $\frac{n!}{(n+1)!}$		
2	L() + 11 - () - 11 =				
	(A) 4 i (B) 8	i (C) 6 i (D	0) 10 i		
3	Value of $\sin^2 \pi / 4$	$+\cos^2 \pi / 4 =$			
	(A) 0 (B) -1	(C) 1 (D) $\frac{1}{\sqrt{2}}$			
4	Sec (17/2 - A) -		1		
•	(A) $-\sec\theta$ (B) $-$	$cosec \theta$ (C) $sec \theta$	(D) cosec θ		
5	Period of cosec x is	(c) see 0	(D) COSECIO		
		(C) 3π (D	$\pi/2$		
6	Radius of escribed cir	rcle opposite to vertex A	A of triangle is		
	$(A) \frac{\Delta}{c}$ $(B) \frac{\Delta}{c}$	$(C) \stackrel{\Delta}{\longrightarrow} (D$			
7	$\cos x = \frac{1}{2}$ then $x = \frac{3-a}{2}$	S-b	' S-c		
	(A) $\pi/6$ (B) $\pi/4$	(C) $\frac{\Delta}{S-b}$ (D)	0) =/3		
8	$\sin(\cos^{-1}\sqrt{3}/2) =$	(0) 11/3	אן ווע	O '	
•	(A) π /6 (B) π /2	(C) $\frac{2}{\sqrt{3}}$			
_			2) 1/2/		
9	1 is not nu	/ \			
10	(A) Odd (B)	1 / () /			
10		of complex number (0,:			
11		(-1,0) (C) (1	binary operation, then set	C is called	
	(A) Groupoid (B)	Semi-Group (C) M	lonoid (D) Group	G is called	
L2		itements p and q is	(b) 6/6up		
			$(D) p \leftrightarrow q$		
13	Tabular form of $\{x \mid$	$\begin{array}{ccc} V & q & (\xi) & p \rightarrow q \\ x \in N \land x + 4 = 0 \end{array}$	is		
	(A) { } (B) {0}	(C) {-4}	(D) {0,4}		
4	A square matrix A is s	ymmetric if A ^t =			
	$(A) At \qquad (B) - A$	(C) A	(D) - A		
.5	If order of matrix A is	2x5 and order of B	is 5 x 7, then order of AB is	S	
	(A) 5 x 2 (B) 7	x 5 (C) 7 x 2	(D) 2 x 7		
6	α , β are roots of λ	$(2)^{2}+2x+1=0$, then α^{2} .	$+ \beta^2 =$		
7	If wis subgreat of w	(C) -2 nity, then $(1 + \omega + \omega^2)^2 = 0$	(D) 2		
	(A) ω (B) ω	2			
			(D) 1		
0	$\frac{2}{x^2 - 1} = \frac{1}{x - 1} + \frac{B}{x + 1} ,$	rnen value of B is			
ľ	(A) 1 (B) -1	(C) 2	(D) -2		
9	Sum the series $1 + \frac{9}{10}$	+ 100 +			
- 1	(A) 10 (B) 9	(C) 9/10	$(D) \frac{10}{}$	3	
- 1					
0	'^\ 4 (B) -4	vhose general term is a			
	4 (b) -4	(C) 5	(U) -5		

GROUP : FIRST

SUBJECTIVE DART

TI

TIME: 2 HRS 30 MINUTES

16

MARKS: 80

SECTION-I

QUESTION NO. 2 Write short answers any Eight (8) of the following

DGK-1-24

-			
i	Simplify (7, 9) + (3, -5)		
ii	Find the multiplicative inverse of (-4 ,7)		
iii	$\forall z \in C$, prove that $z.\overline{z} = z ^2$		
iv	Simplify i-10		
v	Write the power set of { 9 , 11}		
vi	Construct the truth table for ($p \land \sim p$) $\rightarrow q$		
vii	Find x and y if $\begin{bmatrix} x+3 & 1 \\ -3 & 3y-4 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ -3 & 2 \end{bmatrix}$		
viii	If A and B are square matrices of the same order, then explain why in general $(A+B)^2 \neq A^2 + 2AB + B^2$		
ix	Without expansion show that $\begin{vmatrix} 6 & 7 & 8 \\ 3 & 4 & 5 \\ 2 & 3 & 4 \end{vmatrix} = 0$		
х	Solve the equation $x^2 - 2x - 899 = 0$ by completing the square		
хi	Evaluate $\omega^{28} + \omega^{29} + 1$		
xii	Find the condition that one root of equation $x^2 + px + q = 0$ is double the other.		

QUESTION NO. 3 Write short answers any Eight (8) of the following

16

i	Define an identity	
, ii	Change $\frac{6x^3+5x^2-7}{2x^2-x-1}$ in to proper fraction	
iii	Find the next two terms 1, 3, 7, 15, 31,	
iv	If $a_{n-3} = 2n-5$, find the nth term of the sequence	
V	Show that the reciprocals of the terms of the geometric sequence a_1 , a_1r^2 , a_1r^4 ,	m
vi	Find A.M between $x-3$ and $x+5$	
vii	Find the value of n when ${}^{n}P_{4}$: ${}^{n-1}P_{3} = 9:1$	
viii	Find the value of n when ${}^{n}C_{10} = \frac{12 \times 11}{2!}$	
ix	Determine the probability of getting 2 heads and 2 tails when a coin is tossed four times	
х	Prove $1+4+7++(3n-2)=\frac{n(3n-1)}{2}$	
	Calculate by means of Binomial theorem (0.97) ³	
χi		

1)

(P.T.O)

QUESTION NO. 4 Write short answers any Nine (9) of the following

i	If $\tan \theta = \frac{8}{15}$ and terminal arm of the angle is in the III quadrant, find the value of $\sin \theta$ and $\cos \theta$
ii	Prove that $\sec^2 \theta - \csc^2 \theta = \tan^2 \theta - \cot^2 \theta$
iii	If α , β , γ are angles of a triangle ABC, Prove that $\tan(\alpha + \beta) + \tan \gamma = 0$
iv	Find value of sec 75°, without using tables
٧	Prove that $\cos 20^{\circ} + \cos 100^{\circ} + \cos 140^{\circ} = 0$
vi	Write the domain and range of $y = \tan x$
vii	Find the period of $\csc 10x$
viii	Draw the graph of $y = \sin \frac{x}{2}$ for $0 \le x \le 2\pi$
ix	Find the smallest angle of the triangle ABC , when $a=37.34$, $b=3.24$, $c=35.06$
X	Find area of triangle ABC, if $a = 18$, $b = 24$, $c = 30$
xi	Prove that $r r_1 r_2 r_3 = \Delta^2$
xii	Without using calculator, show that $2 \cos^{-1} \frac{4}{5} = \sin^{-1} \frac{24}{25}$
xiii	Find the solution of equation $\csc\theta = 2$ which lies in $[0, 2\pi]$

SECTION-II

Note: Attempt any Three questions from this section

10 x 3 = 30

Q.5- (A)	For what values of m, will the roots of the equation $x^2 - 2(1+3m)x + 7(3+2m) = 0$ be equal
(B)	Solve the system linear equations by Cramer's Rule $2x_1 - x_2 + x_3 = 8$
	$x_1 + 2x_2 + 2x_3 = 6$ $x_1 - 2x_2 - x_3 = 1$
Q.6- (A)	Resolve into partial fractions $\frac{1}{(1-ax)(1-bx)(1-cx)}$
(B)	If $y = \frac{2}{3}x + \frac{4}{9}x^2 + \frac{8}{27}x^3 + \cdots$ and if $0 < x < \frac{3}{x}$, then show that $x = \frac{3y}{2(1+y)}$
Q.7-(A)	Prove that $^{n-1}C_r + ^{n-1}C_{r-1} = {}^{n}C_r$
(B)	If x is so small that its square and higher powers can be neglected, show that $\frac{1-x}{\sqrt{1+x}} \approx 1 - \frac{3}{2}x$
Q.8-(A)	Show that $\cos 20^\circ \cos 40^\circ \cos 80^\circ = \frac{1}{8}$
(B)	By using $\Delta = \frac{1}{2}$ bc sin α drive the Hero's formula
Q.9-(A)	If $\cot\theta = \frac{5}{2}$ and the terminal arm of the angle is in the I quad, find the value of $\frac{3\sin\theta + 4\cos\theta}{\cos\theta - \sin\theta}$
(B)	Prove that $2 \tan^{-1} \frac{1}{3} + \tan^{-1} \frac{1}{7} = \frac{\pi}{4}$