ROUP : SECOND	11 th CLASS – 1 st Annual 2024	MARKS: 20
ITT DIRECTOR GRAND CANADANIS LA FRANCE	OBJECTIVE	
	L. Lienting tune question as A. B.	, C and D . The choice which
the circles. Cu	itting or filling two or more circles will result in zero	marks in the special
JESTION NO. 1		-2-24
Number of necklad	ces can be made from 6 beads	
(A) 720 (B) 1	.20 (C) 90 (D) 60	
Middle term in ex	(pansion of $(3 + x)^4$ is	9.7
(A) 81 x ²	(B) $54 x^2$ (C) $26 x^2$ (D) $108 x^2$	
One degree is equ	radian	*
(A) $\frac{180}{\pi}$ (B)	$\frac{\pi}{180}$ (C) $\frac{\pi}{90}$ (D) π	
$a \cot (90 - \alpha) = \dots$		•
	$-\tan \alpha$ (C) $\cot \alpha$ (D) $-\cot \alpha$	
5 Period of sin x/3 i	(0) 3 -	-
	$2\pi/3$ (C) 6π (D) 3π	
6 $\cos \alpha/2 =$		
$(\Delta) \frac{s(s-a)}{a}$	(B) $\frac{s(s-b)}{ac}$ (C) $\sqrt{\frac{s(s-a)}{bc}}$ (D) $\sqrt{\frac{s(s-b)}{ac}}$	
7 sec (cos ⁻¹ $\frac{1}{2}$) =	(5) (5) -16	
(A) 1/2 (B) 2	(C) $\pi/3$ (D) $\pi/6$	· ·
8 If $\cos x = -\sqrt{3/2}$, then value of x is	
(A) $\frac{5\pi}{6}$ (B) $\frac{\pi}{6}$	(C) $\frac{1}{3}$ (D) $-\pi/3$	
$a < b \Rightarrow -a > -b$	a, b∈R property used is	(D) Tick stamps
(A) Transitive	(B) Additive (C) Multiplicative	(D) Trichotomy
10 If $Z=1-i$, then	Z =	
(A) 2 (B) -2	(C) $\sqrt{-2}$ (D) $\sqrt{2}$	
11 A and B are disini	int sets then	- Ø
(A) A∩B=Ø	(b) ACC	- 9
12 Tabular form of	$\{x \mid x \in E \land 2 < x \le 4\}$	
(A) {2,3,4}	(B) {2, 4} (C) {4} (D) { Ø }	
13 The set A has me	elements, Number of elements in power set of A 2 ^m (C) 2 ^{m+1} (D) 2 ^{m/2}	
(A) 2 ^{m-1} (B)	10000 10000 10000	
14 Rank of $\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix}$	is	. •
(A) Zero) 1 (C) -1 (D) 2	
15 Determinant of	[-5] \(\frac{1}{15} \)	
(A) Zero (B)	Not possible (C) -5 (D) 5	
16 α , β are roots	s of $ax^2 - bx + c = 0$, then $\alpha + \beta =$	
$(A) \frac{b}{a}$ (B)	$-\frac{b}{a}$ (C) $\frac{c}{a}$ (D) $-\frac{c}{a}$	
17 If polynomial x ²	a -2x + 2 is divided by x - 1, then remainder is	
(4) 4 (D)	1 (C) 0 (D) 2	
18 Partial fraction	n of $\frac{x}{(x-1)(x+2)} = \frac{1}{3(x-1)} + \frac{B}{x+2}$, then value of B	is
(A) 2/2 (D	(x-1)(x+2) $3(x-1)$ $x+23) 3/2 (C) 2/3 (D) -2/3$	
(A) -3/2 (B	natic means between a and b is	
19 Sum of n-arithm $a+b$	$(C) (a+b) \qquad (D) n(a+b)$	
$(A) \frac{a+b}{2} \qquad (B)$) $n(a+b)$ (C) $(a+b)$ (D) $n(\frac{a+b}{2})$	
20 Next term of sec	quence 7,9,12,ls	
(A) 14 (B)	15 (C) 16 (D) 18	ADER CODE - 6198)
117 (Obj) -	- 1 st Annual 2024 SEQUENCE - 4 (PA	ALCK CODE - 0130)

11th CLASS – 1st Annual 2024

ATHEMATICS
GROUP: SECOND

SUBJECTIVE PART

TIME: 2 HRS 30 MINUTES

MARKS: 80

SECTION-I

QUESTION NO. 2. Write short answers any Eight (8) of the following

Dak-2-24

16

JUE	HON NO. 2 Write short answers any eigence,		
i	Simplify (5, -4) (-3, -2)		
ii	Separate into real and imaginary parts $\frac{2-7t}{4+5t}$		
iii	Prove that $\vec{Z} = Z$ if Z is real		
iv	Simplify $(a + b i)^2$		
V	Write two proper subsets of { a , b , c }		
vi	Show that $(p \land q) \rightarrow p$ is a tautology		
vii	Find x and y if $\begin{bmatrix} 2 & 0 & x \\ 1 & y & 3 \end{bmatrix} + 2 \begin{bmatrix} 1 & x & y \\ 0 & 2 & -1 \end{bmatrix} = \begin{bmatrix} 4 & -2 & 3 \\ 1 & 6 & 1 \end{bmatrix}$		
viii	1-7 11 15 103		
ix	If $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 0 \\ -2 & -2 & 1 \end{bmatrix}$, then find A_{12} and A_{32}		
x	Evaluate $\omega^{28} + \omega^{29} + 1$		
хi	Use remainder theorem to find the remainder when $x^2 + 3x + 7$ is divided by $x + 1$		
xii	Discuss the nature of the roots of equation $2x^2 - 5x + 1 = 0$		

OUESTION NO. 3 Write short answers any Eight (8) of the following

16

i	Define partial fraction resolution		
ii	Suppose $\frac{7x+25}{(x+3)(x+4)} = \frac{A}{x+3} + \frac{B}{x+4}$ Find the values of A and B		
iii	Write the first four terms of the following sequence, if $a_n = (-1)^n n^2$		
iv	Which term of the A.P 5, 2, -1, is -85 ?		
v	If $\frac{1}{a}$, $\frac{1}{b}$ and $\frac{1}{c}$ are in G.P. Show that the common ratio is $\pm \sqrt{\frac{a}{c}}$		
vi	Show that $G^2 = AH$ if $a = 2i$, $b = 4i$		
vii	Find the value of n if ${}^{n}P_{2} = 30$		
viii	Find the number of the diagonals of a 6-sided figure	`	
ix	A die is rolled. What is the probability that the dots on the top are greater than 4?		
x	Prove that $4^k > 3^k + 4$ is true for $k = 2, 3$		
хi	Calculate (0.97) ³ by means of binomial theorem		
xii	Expand up to 4 terms $(1-x)^{1/2}$, taking the values of x such that the expansion is valid		

(P.T.O)

40L	TION NO. 4 Write short answers any Nine (9) of the following	19
i	Find ℓ , when θ = 65° 20′ , r = 18 mm	
ii	Verify that $2 \sin 45^\circ + \frac{1}{2} \csc 45^\circ = \frac{3}{\sqrt{2}}$	
iii	Without using the tables , find the value of sec (- 300)	
iv	Prove that $\frac{\cos 8^o - \sin 8^o}{\cos 8^o + \sin 8^o} = \tan 37^o$	
V	Prove that $1 + \tan \alpha \tan 2 \alpha = \sec 2 \alpha$	
vi	Write down the domain and range of sin x	
vii	Find the period of $\cot \frac{x}{2}$	
viii	Draw the graph of $y = \cos x$ for $0 \le x \le 360^{\circ}$	
ix	What is difference between right angle triangle and oblique triangle	
х	Find the area of the triangle ABC, if $a = 200$, $b = 120$, $\gamma = 150^{\circ}$	
хi	Find the radius of in-circle if a = 13 , b = 14 , c = 15	
xii	Without using calculator, show that $tan^{-1} \frac{5}{12} = sin^{-1} \frac{5}{13}$	
xiii	Solve the equation $\sin x + \cos x = 0$	

SECTION-II

Note: Attempt any Three questions from this section

 $10 \times 3 = 30$

vote: Atte	mpt any Three questions from this section		
Q.5- (A)	Solve the equation $\sqrt{5x^2 + 7x + 2} = \sqrt{4x^2 + 7x + 18} = x - 4$		
(B)	Use matrices to solve the following system of equation $2x_1 + x_2 + 3x_3 = 3$ $x_1 + x_2 - 2x_3 = 0$ $-3x_1 - x_2 + x_3 = -4$		
Q.6- (A)	Resolve the following into partial fractions $\frac{x^2}{(x-2)(x-1)^2}$		
(B)	Find n so that $\frac{a^n + b^n}{a^{n-1} + b^{n-1}}$ may be the A.M. between a and b		
Q.7-(A)	A natural number is chosen out of the first fifty natural numbers. What is the probability that the chosen number is multiple of 3 or 5 ?		
(B)	Expand $\left(\frac{x}{2} - \frac{2}{x^2}\right)^6$ by using binomial theorem		
Q.8-(A)	Show that $\cos 20^\circ \cos 40^\circ \cos 80^\circ = \frac{1}{8}$		
(B)	The sides of triangle are $x^2 + x + 1$, $2x + 1$ and $x^2 - 1$ Prove that the greatest angle of the triangle is 120°		
Q.9-(A)	Prove that : $\sqrt{\frac{1-\sin\theta}{1+\sin\theta}} = \sec\theta - \tan\theta$ Where θ is not an odd multiple of $\frac{\pi}{2}$		
(B)	Prove that: $\cos^{-1} A + \cos^{-1} B = \cos^{-1} [AB - \sqrt{1 - A^2} \sqrt{1 - B^2}]$		