101-12-18

PAPER: 11

Marks: 17

Statistics (New Scheme)

(INTER PART II)-418-(I) Code: 8181

Time: 20) Minutes		OBJECTIV	VE The	hoice which you think is
Note:	two more circles will res	sult in ze	ro mark in that quest blank.	on as A, B, C and D. The cor. Use marker or pen to fit tion. Attempt as many que	I the circles. Cutting or filling stions as given in objective to
1- 1-	Normal distribution have parameters				(I)) one
	(A) three	(B)	four	(C) two	(D) one
	In standard normal d	istribut	ion mean and varia	nce respectively are	
2-	(A) 0 & 1	(B)	0 & 3	(C) 0 & 5	(D) 0 & 2
2	Mean and variance of	of a nor	mal distribution are	2	/1\\
3-	(Λ) n, np	(B)	np. npq	(ζ.) μ. ο	(D) μ, σ
		ions fal	ling in a sample are	e called	
4-	(A) sample size	(B)	population size	(C) sample frame	(40) sample design

1-	Normal distribution		(C) two	(D) one
	(A) three	B) four		
2-	In standard normal distril	oution mean and varia	mee respectively are	(D) 0 & 2
	(A) 0 & 1	B) 0 & 3	(C) 0 & 5	(1) 0000
3-	Mean and variance of a r	normal distribution are	;	(D) μ.σ
,	(Λ) n, np	B) np. npq	(C) µ. o	(D) p. 3
4-	Number of observations	falling in a sample are	e called	anda daging
	(A) gample size	(B) population size	(C) sample trame	(1) sample design
5-	If sampling is done with	replacement then tota	al number of possible same	oles are
		(B) $^{N}C_{n}$	(C) $^{N_{p}}_{n}$	(D) No
6-	. : Campling is d	one		(D) neither A rest is
	(A) with replacement	(B) without replace	ment (C) both A and B	
7-	Any hypothesis which i	s accepted when null	hypothesis is rejected is ca	illed
-	(A) simple	(B) composite	(C) alternative	(D) statistical
8-	Probability of rejecting	Ho when actually it i	true is called	m. Land of simplic
.,-	(A) α error	(B) Berror	(C) level of confider	nce (D) level of significa-
9-	In estimation if we find	single value then it is	s called	
9-	(A) interval estimation	a	(B) point estimation(D) interval estimator	
	(C) confidence interv The dependance of on	a wrighte to another v	ariable is called	
10-		e variance to another.	(C) association	(D) regressor
	(A) regression	(B) correlation		
11-	Correlation co-efficien		(C) ∞ to ≠	(D) 3 and -3
	(A) -1 and ± 1	(B) 0 and 1		
12-	Interdependance betw		variables is called	(D) estimation
	(A) correlation	(B) regression	(C) association	(12)
13-	Two attributes X and	Y are called +vely as	ssociated (X)	Y) on average
	(A) $(XY) \neq \frac{(X)(Y)}{}$	(B) $(XY) = \frac{(X)(1)}{n}$	$(C) (X)(Y) > \frac{1}{n}$	(D) (X())
14	- Chi-square test is not	used if any expected	frequency is less than (C) 3	(D) 15
. ,	(A) = 10	(B) 2	(1)	
15	The graph of time so (A) histogram	ries is called (B) historigram	(C) ogive	(D) pie-diagram
16	5- Damages due to floo	ods, strikes and fires an	re (C) seasonal	(D) cyclical

Cuj-12-18

Statistics (New Scheme) Time: 2:40 Hours

(INTER PART II)-418

PAPER: 11 Marks: 68

SUBJECTIVE

Note: Section I is compulsory. Attempt any Three (3) questions from Section II.

SECTION I

Write short answers to any Eight questions: 2.

12 x 8 = 16)

- i- What are the values of two constants e and π in the equation of normal distribution?
- ii- In normal distribution mean = 40, find median and mode.
- iii- What is relation between binomial distribution and normal distribution?
- iv- Write the equation of normal distribution with mean = 30 and SD = 10.
- v- If X is N(25, 25) find the value of maximum ordinate.
- vi- Define biased estimator.
- vii- Define confidence limits.
- viii- Define level of significance.
 - ix- Define region of acceptance.
 - x- What is meant by critical region?
 - xi- Define hardware and software.
- xii- What is CPU?

3.

- Write short answers to any Eight questions:
 - i- Write any two advantages of sampling. What is the term bias in sampling?
 - iii- Explain the term probability sampling.
 - iv- Give $\pi_1 = \frac{2}{3}$, $n_1 = 2$ and $\pi_2 = \frac{1}{2}$, $n_2 = 2$. Find var $(\hat{p}_1 \hat{p}_2)$
 - v- Find $\sigma_{\overline{x}}^2$ if N=6, n=2 σ =4. For sampling with and without replacement.
 - vi- Write any two purposes of sampling.
 - vii- Given $b_{yx} = -1.4$ and $b_{xy} = -0.87$. Find (r).
- viii- Give two properties of coefficient of correlation.
- Given n = 15, $S_x = 7.933$, $S_y = 16.627$ $\sum (x x)(y y) = 148$ compute b_{yx} .
- x- Define independent variable in regression model.
- xi- Sketch scatter diagram indicating positive correlation.
- xii- What is meant by residual (error) in regression model?

Write short answers to any SIX questions:

(2 x 6 = 12)

- i- Define association of attributes.
- ii- What is Rank correlation?
- iii- What is ultimate class frequency?
- iv- What is order of the class?
- v- Determine whether two attributes are independent or associated N = 1024, (A) = 144, (B) = 384, (AB) = 54
- vi- Define historigram.
- vii- What is meant by analysis of time series?
- viii- Define secular trend.
 - ix- Give two examples of seasonal movements.

SECTION II

- In a normal distribution $\mu = 20$ and $\sigma^2 = 16$. Find two points containing the middle 90 % area.
 - (b) In a normal distribution lower and upper quartiles are 25 and 35. Find the probability that (i) $P(X \le 19)$ (ii) $P(X \le 35)$

(Turn over)

. 5

4

Cuj-12-18

- 6- (a) If the mean and variance of a population are 20 and 4 respectively, What would be the mean and S.E(x) if the samples are drawn with replacement of size 5.
 - (b) Draw all possible samples of size 3 without replacement from population i.e. 2, 4, 5, 7, 10. Find the sample proportion (p) of prime numbers in each sample. Verify that

(i)
$$\mu_{\stackrel{\wedge}{p}} = P$$
 and $\sigma_{\stackrel{\wedge}{p}}^2 = \frac{Pq}{n} \cdot \frac{N-n}{N-1}$

- 7- (a) Calculate 95 % confidence interval for population mean. Given that $\sigma^2 = 49$, n = 25, $\overline{X} = 83$
 - (b) A basket ball player has hit on 80 % of his shots from the floor. If on the next 100 shots he makes 70 baskets, would you say that his shooting has improved $\alpha = 5 \%$
- 3- (a) Given the following information:

$$n = 15$$
, $\bar{x} = 25$, $\bar{y} = 18$, $\sum (x - \bar{x})^2 = 136$, $\sum (y - \bar{y})^2 = 138$
 $\sum (x - \bar{x})(y - \bar{y}) = 122$

Compute the regression line Y on X and estimate Y when X = 24

- (b) Compute the coefficient of correlation between X and Y for the information given in part (a)
- (a) The following table gives the condition at home and condition of the children:

Condition	Condition at home		
Condition of children	Clean	Not elean	
Clean	175	143	
Fairly clean	136	116	
Dirty	125	145	

Test for the association between the condition at home and condition of children.

(b) Compute 3-years moving average from the data given below:

Years	1992	1993	1994	1995	1996
Sales	2.4	2.8	3	3.5	4