Rol	No.	of Candidate :				
H	YSI	CS	Intermediate Part-II,	Class 12 th (1 st A 424- IV)	Paper II	Group - I
Γin	nè: 2	20 Minutes	OBJECTIVE	Code: 8477 GUF-	1-24	Marks: 17
Not	fil	I that circle in front of the reles will result in zero	each objective type question at question number. Use ma	on as A, B, C and D. The choice arker or pen to fill the circles.	ce which you	ing two or more
	2.		ers in a strong magnetic fie			
	3.	Turn ratio of a transfor coil will be (A) 440 V	rmer is 50. If 220 volt A.C (B) 4.4 V	is applied to its primary coil (C) 220 V	l, voltage in t (D) 11000	
	4.	The physical quantity (A) energy	related to photon, that doe (B) speed	s not change in Compton sca (C) frequency	attering is (D) wavel	ength _
	5.	In photoelectric effect, (A) wavelength of lig (C) threshold frequen		rons depends upon (B) intensity of light (D) work function	,0,	
•	6.	Glass is also known as (A) solid	(B) liquid	(C)/solid liquid	(D) gas	•
	7.	The unit of electric int (A) V/A	ensity other than NC ⁻¹ is (B) V/m	(c) v/c	(D) N/V	
	8.	The unit of \vec{E} is NC ⁻¹ : (A) ms ⁻²	and that of \vec{B} is $NA^{-1}m^{-1}$, (B) ms	then the unit of E/B is (C) m ⁻¹ s ⁻¹	(D) ms ⁻¹	·
	9.	The binding energy pe (A) Helium	r nucleon is maximum for (B) Iron	(C) Polonium	(D) Radiu	m
1	0.	For holography, we us (A) r-rays	e a beam of (B) x - rays	(C) β – rays	(D) Laser	
1	1.	The colour of light em (A) its forward biasip (C) amount of forward		(B) the reverse biasing (D) type of semi-conduct	or material	used
1	2.	When current flowing (A) half	through an inductor is dou (B) four times	abled, the energy stored in it (C) one fourth	becomes (D) double	2
1	3.	The half-life of Radon (A) 3.8 days	gas is (B) 38 days	(C) 3.8 months	(D) 38 mg	onths
1	4.	An ideal voltmeter wo (A) zero resistance	ould have (B) high resistance	(C) infinite resistance	(D) low re	esistance
1	5.	plates, then capacitano	e of capacitor becomes	has a capacitance C. If the oi	(D) 2C	between the
		(A) C	(B) C/2	(C) $C/\sqrt{2}$	(D) 2C	
1	ø .	The voltage gain of a (A) 2000	n amplifier having $r_{ie} = 1$ (B) 1000	$Ω$, $β = 100$ and $R_c = 20 Ω$ is (C) 500	(D) 5	
1	7.	When we accelerate the (A) Mechanical waves (C) Stationary waves		(a) Travelling waves (b) Electromagnetic wav		stA 424-40000
			1		212-(11)-1	11 727-70000

PHYSICS

Intermediate Part-II, Class 12th (1stA 424) Paper: II

Group - I

Time: 2:40 Hours

SUBJECTIVE

GIUJ-1-24

Marks: 68

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION-I

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- Define electric field intensity. Also give its mathematical form.
- Define electron volt? Relate electron volt with Joule. ii.
- The time constant of a series RC circuit is, t=RC. Verify that an Ohm times Farad is equal to Second. iii.
- Why the resistance of an ammeter should be very low? iv.
- Electric lines of force never cross. Why? V.
- How can you use a magnetic field to separate isotopes of chemical elements? vi.
- What do you mean by lamp-scale arrangement? vii.
- What is Lorentz force? viii.
- A particle which produces more ionization is less penetrating. Why? ix.
- How can radioactivity help in the treatment of Cancer? X.
- Differentiate between nuclear fission and nuclear fusion. xi.
- Define isotopes. Write down isotopes of Hydrogen atom. xii.

3. Write short answers to any EIGHT questions.

- Describe a circuit which will give a continuously varying potential. i.
- What is the difference between the emf and potential difference? ii.
- What is the temperature co-efficient of resistance? iii.
- How the reception of a particular radio station is selected on your radio set? iv.
- What is the principle of metal detector? ٧.
- Why power loss in a pure capacitance circuit is zero? vi.
- What is meant by hysteresis loss? How it is used in the construction of a transformer? vii.
- What is meant by Retantivity and Coercivity? viii.
- How can you identify tumors and inflamed tissues using 'MRI'? ix.
- Why is the base current in a transistor very small? X.
- Explain OP-AMP as a comparator. xi.
- What is the voltage gain of transistor? xii.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- Name the factors upon which the self-inductance depends. i.
- Write down the methods to improve the efficiency of a transformer. ii.
- Can a D.C. motor be turned into a D.C. generator? What changes are required to be done? iii.

(Turn Over)

	- 2 -	
iv.	Define work function and threshold frequency.	*
٧.	Calculate the value of Compton wavelength of electron.	
vi.	We do not notice a de-Broglie wavelength for a pitched cricket ball. Explain why?	
vii.	When does light behave as a wave and when does it behave as a particle?	
viii.	Describe the types of spectra and give its example.	
ix.	What are advantages of laser over ordinary light?	
	SECTION - II	
5. (a)	How did Millikan calculate the charge on an electron? Explain	(5)
	A rectangular bar of iron is 2.0cm by 2.0cm in cross section and 40cm long. Calculate its resistance if the resistivity of iron is $11x10^{-8} \Omega m$	(3)
6. (a)	Define galvanometer. Explain its principle, construction and working.	(5)
	The back emf in a motor is 120V when the motor is turning at 1680 rev per min. What is the back emf when the motor turns 3360 rev per min?	(3)
7. (a)	Explain Reverse Biased p-n junction and describe how depletion region increases due to Reverse Biased of p-n junction.	(5)
(b)	Find the value of the current flowing through a capacitor of capacitance 0.5µl², when connected to a source of 150V at 50Hz.	(3)
	State and explain photoelectric effect. Write down its experimental results.	(5)
(b)	The length of a steel wire is 1m and its cross-sectional area is $0.03 \times 10^{-4} \text{m}^2$. Calculate the work done in stretching the wire when a force of 100N is applied within the elastic region. Young's modulus of steel is $3.0 \times 10^{11} \text{Nm}^{-2}$.	(3)
9. (a)	Derive the expression for Quantized Energy of Hydrogen atom on the basis of Bohr's atomic	(5)

(b) How much energy is absorbed by a man of mass 80Kg who receives a lethal whole body dose of 400 rem in the form of low energy neutrons for which RBE factor is 10?

315-1st A 424-40000

(3)