Roll No. of Candidate: _ PHYSICS Time: 20 Minutes		(INTERMEDIATE PART-II) 421 - (IV) Paper					r II (Group – I)		
			BJECTIVE				Marks:		
Note: Yo fil cir	ou have four choice If that circle in front reles will result in aper and leave othe	s for each obje of that questic zero mark in t	ctive type quest	tion as A, B,	C and D. The	choice which y	Illing two or	more	
1. 1.	Electrons are (A) hadrons	(B)	leptons	(C)	quarks	(D)	baryons		
2.	The amount of er (A) 9.315 Mev	ergy equivale		(C)	931.5 Mev	(D)	211.5 Mev		
3.	Normally an elec (A) 10 ⁻⁸ s	tron can resid (B)	e in metastable 10 ⁻⁶ s	e state for ab (C)	out 10 ⁻⁴ s	(D)	10 ⁻³ s		
4.5.	The energy requi (A) 0.51 Mev Compton wavele	(B)	roduction is 1.02 Mev	(C)	2.04 Mev	(D)	3.06 Mev		
	(A) $\frac{h}{m_0c^2}$	(B)	$\frac{\text{hc}}{\text{m}_{\text{o}}}$	(C)	$\frac{h}{m_o c}$	(D)	$\frac{hc^2}{m_o}$		
6.	A photodiode ca (A) 10 ⁻³ s	(B)	10 ⁻⁶ s	(C)	10 ⁻⁹ s	(D)	10 ⁻¹² s		
7.	The relation for the (A) $G = \frac{R_1}{R_2}$	the gain of an (B)	$G = \frac{R_2}{R_1}$		$G = \frac{-R_2}{R_1}$	(D)	$G = \frac{-R_1}{R_2}$		
8.	Substances which (A) brittle	h break just a (B)	fter the elastic non-magnetic	(C)	ned are called magnetic	i subst	ances. ductile		
9.	In R-L series cir (A) $\theta = \tan^{-1}(\theta)$	ωRL)	00	(B)	$\theta = \tan^{-1} \left(\frac{1}{2} \right)$				
	(C) $\theta = \tan^{-1} \left(-\frac{1}{2} \right)$	$\frac{\omega L}{R}$			$\theta = \tan^{-1} \left(\frac{1}{2} \right)$	•			
10.	The capacitance with an inductor (A) 5.09 PF	of 5 millio	5.09 μF				5.09 KF		
11.	A device which (A) D.C. gener	converts mec	hanical energy D.C. motor	into electric (C)	al energy is of A.C. generated	called ator (D)	transforme	r	
12.	The relation for (A) $L = \mu_o nA$	$\int f$ (B)	$L = \mu_o NA$	l (C)	$L = \mu_o n^2 A$	Al (D)	$L = \mu_o N^2$	Al .	
13.	The brightness (A) filament	of spot on the (B)	screen of CRC cathode	is controlle (C	d by) anode	(D) grid		
14.	The relation $\sum_{i=1}^{N}$			(0)		law (D)) Gauss's la	W.	
15.	(A) Faraday's In colour code (A) ±20%	for carbon res	Lenz's law istor, if there is ±10%	no fourth b	Ampere's and, then tole $\pm 5\%$	erance is) ±4%		
16.	The formula fo	r electric field	as potential gr	radient is		- (D	$E = \frac{-\Delta U}{\Delta t}$		
17.	(A) $E = \frac{-\Delta v}{\Delta r}$ The SI unit of						Δt D) Kg m ⁻² s	2 -1	
	(A) $\text{Kg m}^2 \text{s}^{-1}$	c (F	$Kg m^2 s^{-2} c$	G (0	C) $\text{Kg m}^2 \text{s}^{-2}$		D) Kg m ⁻² s i-(IV)-421-3		

Paper II

(Group -I)

: 2:40 Hours

SUBJECTIVE

Marks: 68

e: Section I is compulsory. Attempt any three (3) questions from Section II.

(SECTION-I) GUJ-G1-21

2. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- A particle carrying a charge of 2e falls through a potential difference of 3.0 V. Calculate the energy acquired by it.
- ii. Define electron volt.
- iii. Define electric flux. Also write down its unit.
- iv. How can you identify that which plate of a capacitor is positively charged?
- v. Why does the picture on a T.V screen become distorted when a magnet is brought near the screen?
- vi. How can you use a magnetic field to separate isotopes of chemical element?
- vii. A plane conducting loop is located in a uniform magnetic field that is directed along the x-axis. For what orientation of the loop, is the flux a maximum? For what orientation is the flux a minimum?
- viii. If a charged particle moves in a straight line through some region of space, can you say that the magnetic field in the region is zero?
- ix. Does the induced emf in a circuit depend on the resistance of the circuit?

 Does the induced current depend on the resistance of the circuit?
- x. Does the induced emf always act to decrease the magnetic flux through a circuit?
- xi. Is it possible to change both the area of the loop and the magnetic field passing through the loop and still not have an induced emf in the loop?
- xii. Show that ε and $\frac{\Delta \varphi}{\Delta t}$ have the same units?

3. Write short answers to any EIGHT questions.

 $(2 \times 8 = 16)$

- i. Is the filament resistance lower or higher in a 500 W, 220 V light bulb than in a 100 W, 220 V bulb.
- ii. Describe a circuit which will give a continuously varying potential.
- iii. What are thermistors? Write down their applications.
- iv. How many times per second will an incandescent lamp reach maximum brilliance when connected to a 50 Hz source?
- v. In a R-L circuit, will the current lag or lead the voltage? Illustrate your answer by a vector diagram.
- vi. A 100 μF capacitor is connected to an alternating voltage of 24 V and frequency 50 Hz. What will be the reactance of the capacitor?
- vii. Define stress and strain. What are their SI units?
- viii. What is meant by hysteresis loss? How is it used in the construction of transformer?
- ix. Define modulus of elasticity. Show that the units of modulus of elasticity and stress are the same.
- x. Why a photo diode is operated in reverse biased state?
- xi. Why is the base current in a transistor very small?
- xii. Define open loop gain and write down its relation.

4. Write short answers to any SIX questions.

 $(2 \times 6 = 12)$

- i. Define pair production and write down its equation.
- ii. What happens to total radiation from a black body if the absolute temperature is doubled?
- iii. Which photon red, green or blue carries the most (a) Energy and (b) Momentum?
- iv. Write down two uses of Laser in Medicine.
- v. What do we mean when we say that the atom is excited?
- vi. What do we mean by the term critical mass?
- vii. Describe a brief account of interaction of various types of radiations with matter.
- viii. Define half-life of a radioactive element, write down its expression.
- ix. What is radioactivity?

13

(Turn Over)

(SECTION - II) 4UJ-41-21

5. (a) What is a wheatstone bridge? How is it used to determine an unknown resistance?				. 5	
	b) Compare magnitudes of electrical and gravitational forces exerted on an object (mass = 10.0 g, charge = 20.0μ C) by an identical object that is placed 10.0μ C				3	The second second
	from the first. $(G=6.67\times10^{-11} \text{ Nm}^2\text{kg}^{-2})$					
6. (a) Discuss the principle, construction and working of an alternating current generator. Also find expression for induced emf and current.				5	
(1	Find the radius of an orbit of an electron moving at a rate of $2.0 \times 10^7 \mathrm{ms^{-1}}$ in a uniform magnetic field $1.20 \times 10^{-3} \mathrm{T}$.			×	3	
7. (2	 Explain R-L-C series resonance circuit. Draw its impedance diagram and also write do its properties. 	wn			5	
(1	b) In a certain circuit, the transistor has a collector current of 10 mA and base current of 40 μA. What is the current gain of the transistor?				3.	
8. (a	What are radiation detectors? Describe the principle, construction and working of Wilson Cloud Chamber for detecting nuclear radiation.				5	
(t	The length of a steel wire is 1.0 m and its cross-sectional area is 0.03×10^{-4} m ² . Calculate the work done in stretching the wire when a force of 100 N is applied within the elastic region. Young's modulus for steel is 3.0×10^{11} Nm ⁻² .			.*	3	
9. (a						
(b					. 3	
· · ·	What is the velocity of the electron?	315-	421.	.340(3	
		010	471.	2400	,,	