Mathematics (Objective)	(Group 1	st) Pa	per (II)	
Time Allowed: - 30 minutes	PAPER COL		Maximum Marks:- 20	
Note:- You have four choices think is correct; fill that circle Cutting or filling two or more	in front of that question circles will result in zer	question as A, B, C and number. Use marker or mark in that questi	d D. The choice which you er or pen to fill the circles. ion. Write PAPER CODE.	
which is printed on this que	estion paper, on the bo	oth sides of the Ansv	wer Sheet and fill bubbles	
accordingly, otherwise the stud	ient will be responsible			
correcting fluid is not allowed.		Q). 1	
$1) \frac{d}{dx} \tan^{-1} x = \underline{\hspace{1cm}}$				
$(A) \frac{1}{1+x^2}$	$(B) \frac{-1}{1+x^2}$	$(C)\frac{1}{\sqrt{1+x^2}}$	$(D) \frac{-1}{\sqrt{1+x^2}}$	
2) $\int_{0}^{3} \frac{3}{x^{2}+9} dx$,			
(A) $\frac{\pi}{6}$	(B) $\frac{3\pi}{4}$	(C) $\frac{\pi}{12}$	(D) 7/ ₄	
3) $\int \sec x \tan x dx$				
(A) $\tan x + c$	(B) $\sec^2 x + c$	(C) $\sec x + c$	(D) $\tan^2 x + c$	
4) $y = x^2 + 2x - 1$ is	_ function.		<u>.</u>	
(A) Constant	(B) Linear	(C) Implicit	(D) Explicit	
5) $f \circ f^{-1}(x)$ is fur	nction.			
(A) Constant	(B) Identity	(C) Even	(D) Exponential	
6) Value of dy, for $y = x^2$ and x changes from 2 to 2.1				
(A) 0.4	(B) 0.2	(C) 0.1	(D) 0	
7) $f(x) = x^{2/3}$, Then $f'(8) =$				
(A) $\frac{3}{2}$ 8) $\frac{d}{dx}e^{3x}$	(B) $\frac{2}{3}$	(C) $\frac{1}{3}$	(D) 3	
8) $\frac{d}{dx}e^{3x}$				
(A) e^{3x}	(B) $3e^{3x}$	(C) $\frac{e^{3x}}{3}$	(D) <i>e</i> ^x	
P.T.O	1219 - 1223 -	9000 (4)	<i>a</i> ,	
			61/1	

9)	Length of transverse axis of	$\frac{x^2}{9}$	$-\frac{y^2}{4}=1$
----	------------------------------	-----------------	--------------------

(A) 3

(B) 6

(C) 2

(D) 4

- 10) If $\underline{u} = \underline{v}$, Then $\underline{u} \cdot \underline{v} \times \underline{w} =$
 - (A) 1

(B) 0

- (C) -1
- (D) ∝

- 11) Length of vector $2\underline{i} \underline{j} 2\underline{k}$ is
 - (A) 0

(B)2

(C)3

(D) 4

$$12) \int e^{x} (\ln x + \frac{1}{x}) dx$$

- (A) $\frac{e^x}{r} + c$
- (C) $e^x \ln x + c$
- (D) lnx + c

- 13) $\int \tan \frac{\pi}{4} dx$
 - (A) $\ln \sin \frac{\pi}{4} + c$ (B) $\sec^2 \frac{\pi}{4} + c$
- (C) $\frac{x}{4} + c$

- 14) Mid point of A(1,2) and B (5,4) is
 - (A)(3,3)
- (B)(2,1)
- (D) (2,3)

- 15) Slope of line joining A(3,1) and B (4,7) is
 - (A) $\frac{6}{7}$

- (D) $\frac{7}{3}$

- 16) Equation of horizontal line through (3,4)
 - (A) y = 3
- (C) x = 3
- (D) x = 4

- 17) (1,0) is solution of_
 - (A) $2x + 3y \ge 3$ (B) 2x
- (C) $2x + y \ge 1$
- (D) $x 3y \ge 2$

- 18) Equation of latus rectum of $y^2 = 4x$ is
 - (A) y = -2
- (B) y = 2
- (C) x = -2
- (D) x = 2

- 19) Radius of circle $x^2 + y^2 + 2y = 5$ is
 - (A) $\sqrt{6}$
- (C)4

 $(D)^2$

- 20) Foci of ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is
 - (A) $(\pm c,0)$
- (B) $(0, \pm a)$
- (C) $(\pm a,0)$
- (D) $(0,\pm b)$

1219 - 1223 - 9000 **(4)**

5 Warning:- Please, do not write anything on this question paper except your Roll No. athematics (Subjective)

(Group 1st)

(Inter Part - II)

Time Allowed: 2.30 hours

(Session 2019-21 to 2021-23)

Maximum Marks: 80

Section ----- I

Answer briefly any Eight parts from the followings:-2.

 $8 \times 2 = 16$

Prove the identity $\cosh^2 x + \sinh^2 x = \cosh 2x$ (i)

(ii) Prove that
$$\lim_{x\to 0} \frac{\sqrt{x+a}-\sqrt{a}}{x} = \frac{1}{2\sqrt{a}}$$

(iii) Evaluate
$$\lim_{\theta \to 0} \frac{1 - \cos \theta}{\theta}$$

(iv) If
$$y = x^4 + 2x^2 + 2$$
 Prove that $\frac{dy}{dx} = 4x\sqrt{y-1}$

(v) Differentiate
$$x^2 + \frac{1}{x^2}$$
 w.r.t $x - \frac{1}{x}$

(vi) Prove that
$$\frac{d}{dx}(a^x) = a^x \ln a$$
 by ab-initio method. (vii) Differentiate $(\ln x)^x$ w.r.t. x

(viii) If
$$y = \sin^{-1} \frac{x}{a}$$
, then show that $y_2 = x(a^2 - x^2)^{-3/2}$ (ix) Expand $(1 + x)^n$ in the Maclaurin Series

Determine the intervals in which f is increasing or decreasing if $f(x) = x^3 - 6x^2 + 9x$ (x)

Define convex region and corner point. (xi)

Graph the solution region of the following system of linear inequalities and find the corner points. (xii)

$$2x - 3y \le 6$$
$$2x + 3y \le 12$$
$$x \ge 0$$

Answer briefly any Eight parts from the followings:-3.

$$8 \times 2 = 16$$

(i) If
$$y = \sqrt{x}$$
 find δy when x changes from 4 to 4.41. (ii) Evaluate $\int \frac{\sqrt{y}(y+1)}{y} dy$

(iii) Evaluate
$$\int \frac{2x}{\sqrt{4-x^2}} dx$$
 (iv) Evaluate $\int \tan^{-1} x dx$ (v) Evaluate $\int \frac{x e^x}{(1+x)^2} dx$

(vii) Find the area bounded by Cos function from $x = \frac{\pi}{2}$ to $x = \frac{-\pi}{2}$. (vi)

Find magnitude and direction cosines of $\underline{v} = 2\underline{i} + 3j - 4\underline{k}$. (viii)

Calculate the projection of $\underline{a} = [3,1,-1]$ along $\underline{b} = [-2,-1,1]$. (ix)

If $\underline{a} + \underline{b} + \underline{c} = 0$ then prove that $\underline{b} \times \underline{c} = \underline{c} \times \underline{a}$. (xi) Find the value of $2\underline{i} \times 2\underline{j} \cdot \underline{k}$. (x)

Prove that $\underline{u} \cdot (\underline{v} \times \underline{w}) + \underline{v} \cdot (\underline{w} \times \underline{u}) + \underline{w} \cdot (\underline{u} \times \underline{v}) = 3\underline{u} \cdot (\underline{v} \times \underline{w})$ (xii)

> 1220 - 1223 - 9000 P.T.O

> > (w) //

4. Answer briefly any Nine parts from the followings:- $9 \times 2 = 18$

(i) Show that the points A(-1,2), B(7,5) and C(2,-6) are vertices of a right angle triangle.

- (ii) Check whether the origin and point (5,-8) lies on same or opposite side of the line 3x + 7y + 15 = 0
- (iii) Find area of the region bounded by the triangle with vertices (a,b+c), (a,b-c) and (-a,c).
- (iv) Find k so that the line joining A(7, 3), B(k,-6) and the line joining C(-4,5), D(-6,4) are parallel.
- (v) Find equation of line passing through (-8, 5) and having slope undefined.
- (vi) Find measure of angle between the lines represented by $6x^2 19xy + 15y^2 = 0$
- (vii) Find the distance of the point P(6,-1) to the line 6x-4y+9=0.
- (viii) Find equation of circle with ends of a diameter at (-3,2) and (5,-6).
- (ix) Write equation of tangent to the circle $x^2 + y^2 = 25$ at (4,3).
- (x) Find centre and vertex of the Parabola $y^2 = -8(x-3)$.
- (xi) Find centre and foci of the ellipse $9x^2 + y^2 = 18$
- (xii) Find an equation of ellipse with given foci $(-3\sqrt{3},0)$ and vertices $(\pm 6,0)$.
- (xiii) Find eccentricity and coordinates of the vertices of the hyperbola $\frac{y^2}{16} = \frac{x^2}{49} = 1$

Section ----- II

Note: Attempt any three questions.

 $(10 \times 3 = 30)$

- 5-(a) Evaluate $\lim_{\theta \to 0} \frac{\tan \theta \sin \theta}{\sin^3 \theta}$
 - (b) Differentiate $\frac{x^2+1}{x^2-1}$ w.r.t. $\frac{x-1}{x+1}$
- 6-(a) Evaluate $\int \sqrt{x^2 a^2} dx$
- (b) Find an equation of the perpendicular bisector of the segment joining the points A(3,5) and B (9,8).
- 7-(a) Find the area between the x-axis and the curve $y=\sqrt{2ax-x^2}$, when a>0
 - (b) Maximize f(x,y) = x + 3y subject to constraints $2x + 5y \le 30$, $5x + 4y \le 20$, $x \ge 0$, $y \ge 0$
- Show that $y = \frac{\ell nx}{x}$ has maximum value at x = e.
 - (b) Find an equation of the circle passing through A(3,-1), B(0,1) and having centre at 4x-3y-3=0.
- 9-(a) Find the focus, vertex and directrix of the parabola $x^2 4x 8y + 4 = 0$.
 - (b) By using vectors, prove that $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$.

1220 -- 1223 -- 9000