MATHEMATICS Time: 30 Minutes		Intermediate Part-II, Class 12 th (1 st A 424-IV) OBJECTIVE Code: 8197		GROUP: I PAPER: II Marks: 20	
Note:	correct, fill that circ	ces for each objective type questi- cle in front of that question number ore circles will result in zero mark	on as A, B, C and D. The or. Use marker or pen to file	choice which you think is	
	(A) Secx + c	(B) $Sec^2x + c$ rabola $x^2 = -16y$ is	(C) Tanx + c	(D) $\ln Secx + tanx + c$	
2-	(A) $(0, -4)$	(B) $(0,0)$	(C)(4,0)	(D) (-4 (0)	
3-	$\int_{0}^{2} x dx is$				
	(A) 0	(B) 1	(C) 2	(D) 4	
4-		= f(x) at $x = a$ represents slope	of	(D) -ti-let line	
5-	(A) tangent line Projection of ve	e at $x = a$ (B) secant line ector \underline{v} along vector \underline{u} is	(C) perpendicular line	(D) straight line	
	(A) $\frac{\mathbf{u} \cdot \mathbf{v}}{ \mathbf{u} }$	(B) $\frac{\underline{\mathbf{u}} \cdot \underline{\mathbf{v}}}{ \mathbf{v} }$	(C) $\frac{\underline{\mathbf{u}} \cdot \underline{\mathbf{u}}}{ \underline{\mathbf{u}} }$	(D) $\frac{\mathbf{v} \cdot \mathbf{v}}{\mathbf{v}}$	
	1 1	1-1	<u> u </u>	TAI	
6-	Which one is tr	ue? (B) $\underline{i} \cdot \underline{i} = \underline{i}$	(C) <u>k</u> × <u>k</u> ≠ ∪	(D) $\underline{\mathbf{k}} \times \underline{\mathbf{i}} = -\mathbf{j}$	
7-	(A) $\underline{i} \times \underline{i} = \underline{i}$ Which one equa	ation represents a circle?	(c) <u>R</u> v <u>R</u> / 3	, , , , ,	
/-	(A) $y^2 = 8x$	(B) $3x^2 + 3y^2 = 9$	(C) $3x^2 + 5y^2 = 9$	(D) $x^2 - 2y = 0$	
8-		oint-slope form of a straight lin		• • • • • • • • • • • • • • • • • • • •	
0-	(A) y = mx + c	(B) $y - y_1 = m (x - x_1)$	$(\cancel{C}) \times \frac{x}{a} + \frac{y}{b} = 1$	(D) $\frac{x}{a} - \frac{y}{b} = 1$	
9-	Order of differe	ential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} = 2x =$	his	· ,	
	(A) 1	(B) 0	(C) 2	(D) 3	
10-		which $f(x) = 4 - x^2$; $x \in (-7, 2)$ (B) $(-2, 0)$	is increasing (C) (-2, 2)	(D) (0, 1)	
11	(A) (0, 2)	$(x) = \frac{x^2 - 1}{x^2 - 1}$ is not defined at			
11-	The function is	X - 1	-42	(D) 1	
	(A) x = 0	$\mathbf{(B)} \ \mathbf{x} = \mathbf{'}$	(C) $x = 2$	(D) $x = -1$	
12-	If $f(x) = x^{\frac{2}{3}}$, th	If $f(x) = x^{\frac{2}{3}}$, the $f'(8)$ is			
	(A) 3	(B) $\frac{1}{6}$	(C) $\frac{2}{3}$	(D) $\frac{1}{2}$	
13-	$\int \frac{f'(x)}{f(x)} dx = ?$	4	J		
	$\frac{f(x)}{(A)\ln x +c}$	9) $\ln f(x) + c$	(C) $\ln f'(x) + c$	(D) $\ln f(x) \cdot f'(x) + c$	
14		the passing through the points (. ,	
14-	(A) 2	(B) 0	(C) 1	(D) -2	
15-	$\lim_{x \to -\infty} (e^x) = ?$			~	
16-	$(A) \infty \\ [\underline{\mathbf{u}} \ \underline{\mathbf{v}} \ \underline{\mathbf{v}}] = ?$	(B) -∞	(C) 1	(D) 0	
10	(A) 1	(B)-1	(C) 0	(D) <u>v</u>	
17-	- /	not solution of inequality x-2	2y≤6	(D) (1 0)	
	$(A)(1, \Lambda)$	(B) $(0, -1)$	(C) (14,0)	(D) $(-4, 0)$	
18-	Major axis of e	ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ with $(a > b)$	is		
	(A) x = 0	(B) y = 0	(C) $x = 1$	(D) $y = 1$	
19-		ran ⁻¹ x w.r.t. x is	1	2	
	$(A)\frac{1}{1-x^2}$	(B) $\frac{1}{x^2-1}$	(C) $\frac{1}{1+x^2}$	(D) $1+x^2$	
20-	Distance of lin	e 5x + 12y + 39 = 0 from orig	in is	(D) 20	
	(A) 3	(B) 5	(C) 12	(D) 39	

WATHEMATICS

Intermediate Part-II, Class 12th (1stA 424)

Time: 2:30 hours

SUBJECTIVE GUT-1-24

GROUP: I PAPER: II Marks: 80

Note: Section I is compulsory. Attempt any three (3) questions from Section II. SECTION I

2. Write short answers to any EIGHT questions:

i- Let $f(x) = x^2 - x$, find the value of f(x - 1).

ii- State the domain and range of f^{-1} if $f(x) = \frac{1}{x+3}$

iii- Evaluate $\lim_{x\to\pi} \frac{\sin x}{\pi - x}$

iv- Express $\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^{2n}$ in term of e.

v- Differentiate $\frac{x^2+1}{x^2-3}$ w.r.t. 'x'

vi- Find $\frac{dy}{dx}$ if $x = at^2$ and y = 2at

vii- Prove that $\frac{d}{dx}(\cot^{-1}x) = \frac{-1}{1+x^2}$

viii- Differentiate $\left(\cos\sqrt{x} + \sqrt{\sin x}\right)$ w.r.t 'x'

ix- Find $\frac{dy}{dx}$ if $y = \sin h^{-1}(ax + b)$

x- Find $\frac{dy}{dx}$ if $y = log_{10}(ax^2 + bx + c)$

xi- Find f'(x) if $f(x) = \frac{e^x}{e^{-x} + 1}$

xii- Define a stationary point.

3. Write short answers to any EIGHT questions:

i- Use differential to find $\frac{dy}{dx}$, if $xy - \ln x = c$

ii- Evaluate
$$\int_{-\infty}^{\infty} \frac{(1-\sqrt{x})^2}{x^2} dx$$
, $(x>0)$

iii- Find ∫Secx dx

iv- Integrate Sin-1x dx

v- Evaluate (e^x (Cosx - Sinx) dx

vi- Calculate $\int_{1}^{2} \frac{x}{x^2 + 2} dx$

vii- Solve the differential equation $\frac{dy}{dx} = \frac{1-x}{y}$

viii- Find an equation of vertical line through (-5, 3).

ix- Write the equation of line in two intercepts form.

x- Convert 15y - 8x + 3 = 0 in slope intercept form.

xi- Find the equation of line passing through A(-6, 5) having slope 7.

xii- Show that the points A(-1, 2), B(7, 5) and C(2, -6) are vertices of right triangle.

 $(2 \times 8 = 16)$

 $(2 \times 8 = 16)$

6

(Turn over)

Write short answers to any NINE questions:

ii- Derive equation of circle in standard form.

Write an equation of circle with centre (-3, 5) and radius 7.

i- What is feasible region?

 $(2 \times 9 = 18)$

Check the position of point (5, 6) with respect to circle: $2x^2 + 2y^2 + 12x - 8y + 1 = 0$ Find equation of hyperbola with foci $(0, \pm 9)$, directrices $y = \pm 4$. Find the focus and directrix of the parabola if $x^2 = 5y$. Find an equation of ellipse with foci (±3,0) and minor axis length 10. Indicate the solution set of system of linear inequality by shading $4x - 3y \le 12$; $x \ge -\frac{3}{2}$ Define equal vector, give an example. Find the magnitude and direction cosines of $\underline{v} = 4\underline{i} - 5\underline{j}$ Find scalar " α " so that the vectors $2\underline{i} + \alpha \underline{j} + 5\underline{k}$ and $3\underline{i} + \underline{j} + \alpha \underline{k}$ are perpendicular. Which vectors, if any, are parallel or perpendicular $\underline{\mathbf{u}} = \underline{\mathbf{i}} + 2\underline{\mathbf{j}} - \underline{\mathbf{k}}$, $\underline{\mathbf{v}} = -\underline{\mathbf{i}} + \underline{\mathbf{j}} + \underline{\mathbf{k}}$, $\underline{\mathbf{w}} = -\frac{\pi}{2}\underline{\mathbf{i}} - \pi\underline{\mathbf{j}} + \frac{\pi}{2}\underline{\mathbf{k}}$ xiii- Prove that the vectors $\underline{i} - 2\underline{j} + 3\underline{k}$, $-2\underline{i} + 3\underline{j} - 4\underline{k}$ and $\underline{i} - 3\underline{j} + 5\underline{k}$ are coplanar. 5 (a) Evaluate $\lim_{\theta \to 0} \frac{\tan \theta - \sin \theta}{\sin^3 \theta}$ 5 (b) If $\tan y(1 + \tan x) = 1 - \tan x$, show that $\frac{dy}{dx} = \frac{dy}{dx}$ 5 6- (a) If $x = \sin \theta$, $y = \sin m\theta$, show that $(1 - x^2)y_2 - xy_1 + m^2y = 0$ 5 **(b)** Evaluate $\int \frac{\sqrt{2}}{\sin x + \cos x} dx$ 5 (a) Evaluate $\int_{0}^{4} \frac{1}{1+\sin x} dx$ (b) Maximize f(x,y) = 2x + 5y, subject to the constraints $2y - x \le 8$; $x - y \le 4$; $x \ge 0$; $y \ge 0$. 5 (a) Find the length of the chord cut off from the line 2x + 3y = 13 by the circle $x^2 + y^2 = 26$. 5 5 (b) Prove that in any $\triangle ABC$, $b^2 = c^2 + a^2 - 2ca \cos B$ Find the interior angles of a triangle with vertices A(-2,11), B(-6,-3) and C(4,-9)5 Find the centre, foci, eccentricity, vertices and directrices of the Ellipse $x^2 + 4y^2 = 16$ 5 313-1st A 424-25000