Roll No. of Candidate						
Time: 30 Minutes			OBJEC Code:	ormediate Part-II, Class 12 th (1 st A 424-IV) OBJECTIVE Code: 8198		
is correct, fill that circle in			cle in front of that question nu	each objective type question as A, B, C and D. The choice which you think a front of that question number. Use marker or pen to fill the circles. Cutting circles will result in zero mark in that question.		
1-	1-	Differential of \sqrt{x}	is			
		$(A) \frac{1}{\sqrt{x}} dx$	(B) $\frac{2}{\sqrt{x}}$ dx	(C) $\frac{1}{2\sqrt{x}}$ dx	(D) $\frac{-1}{\sqrt{x}}$ dx	
	2- If $a = b$ then equation $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ represent					
		(A) Ellipse	(B) Circle	(C) Parabola	(D) Hyperbola	
	3- Degree of differential equation $\frac{d^2y}{dx^2} + \frac{dy}{dx} - 3x = 0$ is			= 0 is		
		(A) 0	(B) 2	(C) 1	(D) 3	
	4-	$\frac{\mathrm{d}}{\mathrm{d}x}(\sin\ln x) = ?$				
		$(A) \frac{e^x - e^{-x}}{2}$	$(B) \frac{e^x + e^{-x}}{2}$	(C) $e^x - e^{-x}$	(D) $e^{x} + e^{-x}$	
5-		Magnitude of a vector $\underline{\mathbf{v}} = -\underline{\mathbf{i}} + \underline{\mathbf{j}}$ is				
	6-	(A) a If dot product of to	(B) $\sqrt{2}$ we non-zero vectors is zero	then vectors will be	(D) $\sqrt{3}$	
		(A) perpendicular	(B) parallel	(C) collinear	(D) all of these	
7-		Length of latus ractum of parabola $y^2 = 4ax$ is				
		(A) 2a	(B) 4ax	(C) 4a	(D) $\frac{1}{2a}$	
8- Every homogeneous equation $ax^2 + 2hxy + by^2 = 0$ represent two r					eal lines through origin if	
	Ü	(A) $h^2 - ab < 0$	(B) $h^2 - ab > 0$	(C) $h^2 = ab$	(D) both (B) and (C)	
9-		If α is constant then $\int \cot \alpha$ dy is				
		(A) Sina + c	(B) $-\sin\alpha + c$	(C) $xSin\alpha + c$	(D) $y\cot\alpha + c$	
10- If $f(x) = \cos x$, then $f\left(\frac{\pi}{2}\right)$ is						
		(A) -1	(B) 1	(C) 0	(D) $\frac{1}{2}$	
	11-	$\lim_{x\to a} \frac{x^3 - a^2}{x - a} = ?$				
		$(A) 3a^2$	(B) a ²	(C) 0	(D) un-defined	
12-		Derivative of \sqrt{x} at $x = a$ is $(A) \frac{1}{\sqrt{a}} \qquad (B) -\frac{1}{2\sqrt{a}} \qquad (C) \frac{1}{2\sqrt{a}} \qquad (D) 2\sqrt{a}$				
		$(A) \frac{1}{\sqrt{a}}$	(B) $-\frac{1}{2\sqrt{a}}$	(C) $\frac{1}{2\sqrt{a}}$.(D) 2√a	
					(Turn over)	

.

13- $\int \frac{\ln x}{x} dx \text{ is equal to}$

$$(A) \ln (\ln x) + c$$

(B)
$$\frac{(\ln x)^2}{2} + c$$

$$(C) \ln x + c$$

(D)
$$\frac{\ln x}{2} + c$$

14- Slope intercept form of a line is

$$(A) y = mx + c$$

(B)
$$\frac{x}{a} + \frac{y}{b} = 1$$

(C)
$$x = 0$$

(D)
$$y = 0$$

15- The function $f(x) = \frac{2+3x}{2x}$ is not continuous at

(A)
$$x = 3$$

(B)
$$x = 0$$

(C)
$$x = -\frac{2}{3}$$

(D)
$$x = 1$$

16- $\frac{1}{6}[\underline{u} \ \underline{v} \ \underline{w}]$ is formula to calculate

(A) area of triangle

(B) volume of parallelpipped

(C) volume of tetrahedron

(D) area of parallelogram

17- (2, 1) is solution of in-equality

(A)
$$2x + y > 5$$

(B)
$$x - 2y > 1$$

(C)
$$3x - 5y < 7$$

(D)
$$2x + y < 5$$

18- Eccentricity of hyperbola is

$$(C) e = 1$$

(D)
$$e > 1$$

19- $\frac{d}{dx} \left[\frac{1}{g(x)} \right]$ is equal to

$$(A) \frac{1}{[g(x)]^2}$$

$$(B) \frac{g'(x)}{g(x)}$$

(C)
$$\frac{-1}{[g(x)]^2}$$

(D)
$$\frac{-g'(x)}{[g(x)]^2}$$

20- Distance of point (Cos3x, Sin3x) from origin is

(A) 9

(B) 6

(C) 3

(D) 1

314-(IV)-1stA 424-24000

SUBJECTIVE

GUJ-2-24

Note: Section I is compulsory. Attempt any three (3) questions from Section II.

SECTION I

Write short answers to any EIGHT questions:

Define rational function. Give one example also.

ii- Find gof(x), when
$$f(x) = \sqrt{x+1}$$
; $g(x) = \frac{1}{x^2}$, $x \ne 0$

iii- Evaluate
$$\lim_{\theta \to 0} \frac{1 - \cos\theta}{\theta}$$

iv- Find 'c' so that
$$\lim_{x\to -1} f(x)$$
 exists, when $f(x) = \begin{cases} x+2, & x \le -1 \\ c+2, & x > -1 \end{cases}$

v- Differentiate
$$(x^2 + 5)(x^3 + 7)$$
 w.r.t x.

Find derivative of Tan³θ Sec²θ w.r.t θ.

vii- Find
$$\frac{dy}{dx}$$
, if $y = \sinh^{-1}\left(\frac{x}{2}\right)$

Define critical value and critical point of function f. VIII-

ix- Differentiate
$$Cot^{-l}\left(\frac{x}{a}\right)$$
 w.r.t x.

x- Find derivative of
$$\frac{x^2+1}{x^2-3}$$
 w.r.t x.

State product rule for derivative of two functions.

Differentiate Sin²x w.r.t Cos⁴x.

Write short answers to any EIGHT questions: 3.

Find δy if $y = x^2 - 1$ and x changes from 3 to 3.02

ii- Evaluate
$$\int \frac{(1-\sqrt{x})^2}{\sqrt{x}} dx$$

ii- Evaluate
$$\int \frac{(1-\sqrt{x})^2}{\sqrt{x}} dx$$

iii- Evaluate $\int \frac{dx}{x(\ln 2x)^3}$; $(x>0)$

iv- Evaluate
$$\int x \tan^2 x dx$$

v- Evaluate
$$\int \frac{e^{x}(1+x)}{(2+x)^2} dx$$

vi- Evaluate
$$\int_{0}^{\pi/6} x \cos x \, dx$$

vii- Solve the differential equation Sin y Cosec x
$$\frac{dy}{dx} = 1$$

Find the distance and midpoint of line joining A(-8, 3) and B(2, -1). viii-

Find an equation of line with x-intercept:-9 and slope:-4 ix-

Transform the equation 5x-12y+39=0 into slope intercept form. X-

Determine the value of P such that the lines 2x-3y-1=0, 3x-y-5=0 and 3x+Py+8=0xi-

xii-Find the angle between the lines represented by $x^2 - xy - 6y^2 = 0$ $(2 \times 8 = 16)$

 $(2 \times 8 = 16)$

(Turn over)

5

5

5

5

5

5

4. Write short answers to any NINE questions:

- i- Define feasible region.
- ii- Graph the feasible region of inequality $3x+2y \ge 6$, $x \ge 0$, $y \ge 0$
- iii- Write an equation of circle with centre (5, -2) and radius 4.
- iv- Write down equation of tangent to $x^2 + y^2 = 25$ at (4, 3)
- v- Find the focus and vertex of parabola $y^2 = 8x$
- vi- Write equation of the ellipse whose foci (±3,0) and minor axis of length 10.
- vii- Find the foci and eccentricity of $\frac{x^2}{4} \frac{y^2}{9} = 1$
- viii- Find the length of tangent drawn from point (-5, 4) to the circle $x^2 + y^2 2x + 3y 26 = 0$
- ix- Find a unit vector in the same direction of the vector $\underline{\mathbf{v}} = [3, -4]$
- x- Write the direction cosine of vector $\underline{\mathbf{v}} = -\hat{\mathbf{i}} + \hat{\mathbf{j}} + \hat{\mathbf{k}}$
- xi- Find a scalar ' α ' so that vectors $2\hat{i} + \alpha\hat{j} + 5\hat{k}$ and $3\hat{i} + \hat{j} + \alpha\hat{k}$ are perpendicular.
- xii- If $\underline{\mathbf{a}} = 4\hat{\mathbf{i}} + 3\hat{\mathbf{j}} + \hat{\mathbf{k}}$ and $\underline{\mathbf{b}} = 2\hat{\mathbf{i}} \hat{\mathbf{j}} + 2\hat{\mathbf{k}}$, find $|\underline{\mathbf{a}} \times \underline{\mathbf{b}}|$
- xiii- A force $\underline{F} = 4\hat{i} 3k$ passes through A(2, -2, 5). Find its moment about B(1, -3, 1)

SECTION II

- 5- (a) Evaluate: $\lim_{\theta \to 0} \frac{1 \cos \theta}{1 \cos \theta}$
 - (b) Differentiate: Sec⁻¹ $\left(\frac{x^2+1}{x^2-1}\right)$ $\hat{\mathbf{w}}$.r.t "x"
- 6- (a) If $y = e^x \text{Sinx}$; show that $\frac{d^2y}{dx^2} 2\frac{dy}{dx} + 2y = 0$
 - (b) Evaluate: ∫Cosec³ x dx
- 7- (a) Evaluate: $\int_{0}^{\pi/4} \frac{\sin x 1}{\cos^2 x} dx$
 - (b) Graph the feasible region of the following system of linear inequalities and find the corner points $2x-3y \le 6$
 - $2x+3y \le 12$
 - $x \ge 0$, $y \ge 0$
- 8- (a) Find an equation of the circle passing through the points A(1, 2) and B(1, -2) and touching the line x + 2y + 5 = 0
 - (b) Use vectors, to prove that the diagonals of a parallelogram bisect each other.
- 9- (a) Find the equation of perpendicular bisector of a segment joining the points A(3, 5) 5 and B(9, 8).
 - (b) Find the equation of parabola with focus (-3, 1) and directrix x = 3.

314-1stA 424-24000