BWP-12-19

| Paper | II | (Objective Type) | Inter -A- 2019    | Session (2015 -17) to (2017 - 19) |
|-------|----|------------------|-------------------|-----------------------------------|
| Time  | :  | 30 Minutes       | Inter ( Part II ) |                                   |
| Marks | •  | 20               |                   |                                   |

Note: Four possible choices A, B, C,D to each question are given. Which choice is correct fill that circle in front of that Question No. Use Marker or Pen to fill the circles. Cutting or filling two or more circles will result in Zero Mark in that Question.

| 1               | Projection of $\vec{u} = a  \underline{i} + b  \underline{j} + c  \underline{k}$ along $\underline{i}$ is : (A) b (B) a (C) c (D) $a + b$                                                       |
|-----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ]               | $\underline{\mathbf{K}} \times \underline{\mathbf{i}} \text{ equals}$ : (A) $\underline{\mathbf{j}}$ (B) $\underline{\mathbf{k}}$ (C) 1 (D) 0                                                   |
|                 | Slope of tangent to parabola $y^2 = 4ax$ at $(a, 2a)$ is : (A) 3 (B) 2 (C) -1 (D) 1                                                                                                             |
|                 | Focus of the Parabola $x^2 = 4ay$ is: (A) (a,0) (B) (-a,0) (C) (0,a) (D) (0,-a)                                                                                                                 |
|                 | The length of diameter of the circle $x^2 + y^2 - 4x - 12 = 0$ is : (A) 6 (B) 7 (C) 8 (D) 9                                                                                                     |
| -               | The Graph of the Inequality ax + by < c is :  (A) Circle (B) Parabola (C) Straight Line (D) Half Plane                                                                                          |
|                 | The perpendicular distance of the line $3x + 4y + 5 = 0$ from the origin is :<br>(A) 0 (B) 1 (C) 2 (D) 5                                                                                        |
|                 | Equation of the line having slope -5 and y - intercept -7 is :<br>(A) $5x+y+7=0$ (B) $5x-y+7=0$ (C) $5x+y-7=0$ (D) $7x+y+5=0$                                                                   |
|                 | When a line intersects the y-axis at (0,4) then y-intercept is :  (A) 4 (B) 2 (C) 0 (D) 6                                                                                                       |
|                 | Slope of the Line Perpendicular to line $2x - 3y + 1 = 0$ is equal to :<br>(A) $\frac{3}{2}$ (B) $-\frac{3}{2}$ (C) $\frac{2}{3}$ (D) $-\frac{2}{3}$                                            |
|                 | Solution of Differential Equation $\frac{dy}{dx} = \operatorname{Sec}^2 x$ is  (A) $y = \operatorname{Cot} x + c$ (B) $y = \tan x + c$ (C) $y = \operatorname{Cos} x + c$ (D) $y = -\tan x + c$ |
| +               | If $\int_2^K 2  dx = 12$ , then $K = ?$ : (A) 12 (B) 16 (C) 8 (D) 4                                                                                                                             |
|                 | $\int \frac{dx}{\sqrt{5-x^2}} = : 		 (A) 		 Sin^{-1} 	 \frac{5}{x} 	 (B) 		 Sin^{-1} 	 \frac{x}{\sqrt{5}} 	 (C) 		 Sin^{-1} 	 \frac{x}{5} 	 (D) 		 Sin^{-1} 	 \frac{\sqrt{5}}{x}$               |
|                 | $\int Sec^{2}x \tan x  dx = $ (A) $Sec x \tan^{2}x + c$ (B) $\frac{Sec^{3}x}{3} + c$ (C) $\frac{Sec^{3}x \tan x}{3} + c$ (D) $\frac{tan^{2}x}{2} + c$                                           |
| -               | If $y = \ln e^x$ , then $\frac{dy}{dx} = :$ (A) $e^x$ (B) $\frac{1}{e^x}$ (C) 1 (D) $e^{x-1}$                                                                                                   |
|                 | The Derivative of $x^3$ w.r.t. $x^2$ is equal to : (A) $\frac{3x^2}{2}$ (B) $\frac{3x}{2}$ (C) $\frac{2}{3x}$ (D) $\frac{2}{3x}$                                                                |
| and an analysis | $\frac{d}{dx}(2x^2+3)^5 =$                                                                                                                                                                      |
| -               | $(A)(2x^2+3)^4$ 20x (B) 20(2x <sup>2</sup> +3) <sup>5</sup> (C) 15(2x <sup>2</sup> +3) <sup>5</sup> (D) (2x <sup>2</sup> +3) <sup>5</sup> 100                                                   |
|                 | Which one is Leibniz Notation for Derivative of $f(x)$ :  (A) $\frac{df}{dx}$ (B) $f(x)$ (C) $\frac{d}{dx}$ (D) D $f(x)$                                                                        |
|                 | Lim $x^3 - x$ $x \to -1$ $x + 1$ = : (A) 0 (B) $\infty$ (C) 2 (D)                                                                                                                               |
|                 | If P is perimeter of square and A is area then P = :<br>(A) $2\sqrt{A}$ (B) 4 A (C) $4\sqrt{A}$ (D) A                                                                                           |
|                 | B                                                                                                                                                                                               |

## BWP-12-19

Mathematics (Subjective) Inter - A -2019 Time 2:30 Hours Marks: 80

Note: It is compulsory to attempt any (8 - 8) Parts each from Q.No. 2 and Q.No.3 while attempt any (9) Parts from Q.No.4. Attempt any (3) Questions from Part - II . Write same Question No. and its Part No. as given in the Question Paper.

|        |         | Part - I                                                                                                                                                                                                                                                                                                                               | 1        | $25 \times 2 = 50$                                                 |  |  |  |  |
|--------|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|--------------------------------------------------------------------|--|--|--|--|
| Q.No.2 | (i      | Express the area 'A' of a circle as a                                                                                                                                                                                                                                                                                                  | function | on of its circumference (C)                                        |  |  |  |  |
|        | (11     | Define Odd Function and give an example.                                                                                                                                                                                                                                                                                               | (iii)    |                                                                    |  |  |  |  |
| 6)     | (iv     | Find the derivative of f(x) = c by definition.                                                                                                                                                                                                                                                                                         | (v)      |                                                                    |  |  |  |  |
|        | (vi)    | Find $\frac{dy}{dx}$ if $y = \sqrt{x + \sqrt{x}}$                                                                                                                                                                                                                                                                                      | (vii)    | Differentiate $\cos^{-1} \frac{x}{a}$ w.r.t. 'x'.                  |  |  |  |  |
|        | (viii   | Smerentiate x-sec 4x w.r.t. 'x'.                                                                                                                                                                                                                                                                                                       | (ix)     | Find $\frac{dy}{dx}$ if $y = a^{\sqrt{x}}$                         |  |  |  |  |
|        | (x)     | Find $y_2$ if $y = 2x^5 - 3x^4 + 4x^3 + x - 2$                                                                                                                                                                                                                                                                                         | (xi)     | Find $\frac{dy}{dx}$ if $y = x e^{Stnx}$                           |  |  |  |  |
|        | (xii)   | Find $\frac{dy}{dx}$ if $y = \frac{x}{lnx}$                                                                                                                                                                                                                                                                                            |          | u.                                                                 |  |  |  |  |
| .No.3  | (i)     | Find Sy and dy if $y = \sqrt{x}$ when x                                                                                                                                                                                                                                                                                                | cha      | nges from A to A to                                                |  |  |  |  |
|        | (ii)    | Find the area above the x-axis and un                                                                                                                                                                                                                                                                                                  | der ti   | 200000000000000000000000000000000000000                            |  |  |  |  |
|        | (iii)   | Graph the solution set of linear i                                                                                                                                                                                                                                                                                                     | near     | the curve $y = 5 - x^2$ from $x = -1$ to $x = -1$                  |  |  |  |  |
|        | (iv)    | Using differentials find $\frac{dy}{dx}$ and $\frac{dx}{dy}$                                                                                                                                                                                                                                                                           | ie .     | anty 2x + 1 ≥ 0 m xy - plane.                                      |  |  |  |  |
|        | (v)     | Define the Definite Integral.                                                                                                                                                                                                                                                                                                          |          | Solve the differential equation                                    |  |  |  |  |
|        | (vii)   | Evaluate $\int \frac{\cos x}{\sin x \ln \sin x} dx$                                                                                                                                                                                                                                                                                    | viii)    | $ydx + xdy = 0$ Evaluate $\int x \ln x  dx$                        |  |  |  |  |
|        | (ix)    | D. C.                                                                                                                                                                                                                                                                                                                                  |          | Evaluate $\int Sec^4x  dx$                                         |  |  |  |  |
|        | (xi)    | c0 1                                                                                                                                                                                                                                                                                                                                   |          | Solve $\frac{dy}{dx} = \frac{y^2 + 1}{e^{-x}}$                     |  |  |  |  |
| No.4   | (1)     | Show that the points $A(0,2)$ , $B(\sqrt{3},-1)$                                                                                                                                                                                                                                                                                       |          |                                                                    |  |  |  |  |
|        | ii)     | triangle.                                                                                                                                                                                                                                                                                                                              |          |                                                                    |  |  |  |  |
|        | iii)    | Find equation of the line through (-4,7)                                                                                                                                                                                                                                                                                               | and      | parallel to $2x - 7y + 4 = 0$                                      |  |  |  |  |
| -      |         | to lin                                                                                                                                                                                                                                                                                                                                 | e wit    | h slope —                                                          |  |  |  |  |
|        | v)      | Find length of tangent from the point P(-                                                                                                                                                                                                                                                                                              | 5,10     | ) to circle 5x <sup>2</sup> + 5y <sup>2</sup> + 14x + 12y - 10 - 0 |  |  |  |  |
| (1     | 1)      | Find Vertex of Parabola $(x-1)^2 = 8(y+2)$                                                                                                                                                                                                                                                                                             |          |                                                                    |  |  |  |  |
| (v     | i) F    | Find Equation of Hyperbola with Foci $(\pm 4,0)$ , Vertices $(\pm 2,0)$ .                                                                                                                                                                                                                                                              |          |                                                                    |  |  |  |  |
| (vi    | ii)     | $f(\overrightarrow{AB} = \overrightarrow{CD})$ , find A if B(1,2),C(-2,5),D(4,11) are given points.                                                                                                                                                                                                                                    |          |                                                                    |  |  |  |  |
| (vii   | ii)   I | If $\underline{\mathbf{u}} = \alpha \underline{\mathbf{i}} + 2\alpha \underline{\mathbf{j}} - \mathbf{k}$ , $\underline{\mathbf{v}} = \underline{\mathbf{i}} + \alpha \underline{\mathbf{i}} + 2\mathbf{k}$                                                                                                                            |          |                                                                    |  |  |  |  |
| (ix    | ) F     | If $\underline{u} = \alpha \underline{i} + 2\alpha \underline{j} - \underline{k}$ , $\underline{v} = \underline{i} + \alpha \underline{j} + 3\underline{k}$ are perpendicular vectors, find value of $\alpha$ .                                                                                                                        |          |                                                                    |  |  |  |  |
| (x)    | F       | Find vector perpendicular to each of vectors $\underline{a} = 2\underline{i} + \underline{j} + \underline{k}$ , $\underline{b} = 4\underline{i} + 2\underline{j} - \underline{k}$<br>Find volume of parallelepiped determined by:                                                                                                      |          |                                                                    |  |  |  |  |
|        |         | $\underline{\mathbf{u}} = \underline{\mathbf{i}} + 2\mathbf{j} - \underline{\mathbf{k}} , \underline{\mathbf{v}}$                                                                                                                                                                                                                      | = i      | -2j+3k, $w=i$ $7i$                                                 |  |  |  |  |
| (xi)   | D       | $\underline{\mathbf{u}} = \underline{\mathbf{i}} + 2\underline{\mathbf{j}} - \underline{\mathbf{k}} , \ \underline{\mathbf{v}} = \underline{\mathbf{i}} - 2\underline{\mathbf{j}} + 3\underline{\mathbf{k}} , \ \underline{\mathbf{w}} = \underline{\mathbf{i}} - 7\underline{\mathbf{j}} - 4\underline{\mathbf{k}}$ Define Trapezium. |          |                                                                    |  |  |  |  |

(xii)

(xiii)

**Define Directional Angles.** 

Define Ellipse.

BWP-12-19

.No.1319

( Part - || )

| 5.5  | (a) | Discuss the continuity of $f(x)$ at $x = 2$                                                                                                                                                                                                                                              |     |
|------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|
|      |     | $f(x) = \begin{cases} x^2 - 1 & x < 2 \\ 3 & x \ge 2 \end{cases}$                                                                                                                                                                                                                        | (5) |
|      | (b) | Discuss the function $f(x) = \sin x + \frac{1}{2\sqrt{2}} \cos 2x$ for extreme values in the interval $(0, 2\pi)$                                                                                                                                                                        | (5) |
| 0.6  | (a) | Evaluate the Integral $\int \frac{2x^2}{(x-1)^2(x+1)} dx$                                                                                                                                                                                                                                | (5) |
|      | (b) | Find the point three – fifth of the way along the line segment from A(-5,8) to B(5,3)                                                                                                                                                                                                    | (5) |
| 0.7  | (a) | Solve the differential equation $\frac{dy}{dx} + \frac{2xy}{2y+1} = x$                                                                                                                                                                                                                   | (5) |
|      | (b) | Minimize $z = 3x + y$<br>Subject to the constraints<br>$3x + 5y \ge 15$<br>$x + 6y \ge 9$<br>$x \ge 0$ , $y \ge 0$                                                                                                                                                                       | (5) |
| lo.8 | (a) | Find a joint equation of the lines through the origin and perpendicular to the lines $x^2 - 2xy \tan \alpha - y^2 = 0$                                                                                                                                                                   | (5) |
|      | (b) | Find equation of the circle of radius 2 and tangent to the line $x - y - 4 = 0$ at $A(1, -3)$                                                                                                                                                                                            | (5) |
| lo.9 | (a) | Find the Centre, Foci, Eccentricity, Vertices and equations of directrices of : $\frac{x^2}{4} = \frac{y^2}{9} = 1$                                                                                                                                                                      | (5) |
|      | (6) | Find a Unit Vector Perpendicular to the plane containing vectors $\underline{\mathbf{a}} = 2\underline{\mathbf{i}} - 6\underline{\mathbf{j}} - 3\underline{\mathbf{k}}  \text{and}  \underline{\mathbf{b}} = 4\underline{\mathbf{i}} + 3\underline{\mathbf{j}} - \underline{\mathbf{k}}$ |     |
|      | (b) | Also find Sine of the angle between them.                                                                                                                                                                                                                                                | (5  |

