1222 Warning:- Please wr. (Inter Part – II)	(Session 2018 20	space provided and sign.	Roll No					
Mathematics (Objective)	(Session 2018-20	to 2020-22) Sig.	of Student					
Time Allowed: - 30 minutes	PAPER CO	DE 4193 590-22	Paper (II) Maximum Marks:- 20					
Note:- You have four choice think is correct. 511 that is	es for each objective typ	e question as A. B. C. and	d D The choice which you					
unink is correct; iiii that circ	tle in front of that quest	tion number. Use marke	er or nen to fill the girales					
Cutting or filling two or mo	uestion paper. on the	both sides of the Appr	on. Write PAPER CODE,					
accordingly, otherwise the s	tudent will be responsib	ole for the situation. Use	e of Ink Remover or white					
correcting fluid is not allowed	i .		. 1					
$1) \int 2^x dx =$								
(A) $\frac{\ell n2}{2^x} + c$	(B) $\frac{1}{2^x \ln 2} + c$	(C) 2^x	(D) 21					
2*	$2^{x} \ell n 2$	$(c) \frac{1}{\ell n^2} + c$	(D) $2^x + c$					
2) The range of the funct	ion $f(x) = \sqrt{x^2 - 4}$ is,							
5	(B) [0,∞)	(C) Set of real	8					
$(A) \qquad \mathbf{R} = (-2, 2)$	(B) $[0,\infty)$	(C) Set of real numbers	(D) [-2, 2]					
3) $\lim_{x\to 0} \frac{e^x - 1}{x} =$			8					
(A) 0	(B) 1	(C) e	(D) ∞					
4) $\frac{d}{dx}(\sqrt{\tan x}) =$		~ ?						
dx								
$(A) \ \frac{1}{2\sqrt{\tan x}} \cdot \sec^2 x$	(B) $\frac{1}{\sqrt{1 + \sec^2 x}}$	$(C) \frac{\sec x}{\cos x}$	$\sqrt{\sec x}$					
$2\sqrt{\tan x}$	$\sqrt{\tan x}$	$\sqrt{\tan x}$	(D) $\frac{\sqrt{\sec x}}{\tan x}$					
5) If $y = \sin \sqrt{x}$, then $\frac{dy}{dx}$			*.					
dx								
(A) $\cos\sqrt{x}$	(B) $\frac{Cos\sqrt{x}}{\sqrt{x}}$	(C) $\frac{\sin\sqrt{x}}{2\sqrt{x}}$	(D) $\frac{\cos\sqrt{x}}{2\sqrt{x}}$					
(12) COSVA	\sqrt{x}	$\frac{1}{2\sqrt{x}}$	(D) $\frac{1}{2\sqrt{x}}$					
d(1)	8							
6) $\frac{d}{dx} \frac{1}{1/1} =$								
lnx								
6) $\frac{d}{dx} \left(\frac{1}{\frac{1}{\ell nx}} \right) =$ (A) $\frac{1}{\ell nx}$	(B) x	(C) <i>lnx</i>	(D) $\frac{1}{x}$					
· ·		(0) 0.111	(\mathcal{L}) x					
7) $\frac{d}{dx} \left(\frac{1}{\cos ec x} \right) =$								
$dx(\cos ec x)$								
(A) $\frac{d}{dx}(\sin x)$	(B) $\frac{d}{dr}(\sec x)$	(C) $\frac{d}{dx}(\cot x)$	d					
dx	$\frac{dx}{dx}$	$\frac{dx}{dx}(\cot x)$	(D) $\frac{d}{dx}(\cos ec x \cot x)$					
$8) \int x^{-1} dx =$								
(A) 0	(B) $lnx + c$	(C) $-x^{-2}+c$	(D) $-\ell nx + c$					
P.T.O	1213 – 1222 -	29000 (2)						
(a) 5								
1023								

9)	The direction	cosines	of a	vector	3i - j	$i+2\underline{k}$	are
----	---------------	---------	------	--------	--------	--------------------	-----

(A)
$$\left[\frac{-3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right]$$
 (B) $\left[\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right]$ (C) $\left[\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{-2}{\sqrt{14}}\right]$ (D) $\left[-\frac{3}{\sqrt{14}}, \frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}\right]$

10) The solution of the differential equation $\frac{dy}{dx} = \frac{y^2 + 1}{e^{-x}}$ is,

(A)
$$y = \tan(e^{-x} + c)$$

(A)
$$y = \tan(e^{-x} + c)$$
 (B) $y = \tan^{-1}(e^{-x} + c)$. (C) $y = \tan(e^{x} + c)$

(D)
$$y = \tan^{-1}(e^x + c)$$

$$11) \int \frac{\cot x}{\ln \sin x} dx =$$

(A)
$$\ln \ln |\sin x| + c$$
 (B) $\ln |\sin x| + c$

(B)
$$\ln |\sin x| + \epsilon$$

(C)
$$\ln |\cot x| + c$$

(D)
$$\ln |\tan x| + c$$

12) If a line ℓ is perpendicular to x-axis, then its inclination is,

$$(A) 0^{\circ}$$

(B)
$$45^{\circ}$$

$$(C) 90^{\circ}$$

13) The equation of the straight line whose slope is 2 and y-intercept 5 is,

(A)
$$y = -5x + 2$$

(B)
$$y = 5x + 2$$

(C)
$$y = x + 2$$

(D)
$$y = 2x + 5$$

14) The distance of a point P(6, -1) from the line 6x - 4y + 9 = 0 is

(B)
$$\frac{49}{\sqrt{52}}$$

(C)
$$\frac{\sqrt{49}}{52}$$

(D)
$$\frac{49}{\sqrt{24}}$$

15) The slope of line through the points (-2, 4), (5, 11) is

16) Point (3, 2) is not the solution of inequality

$$(A) x + y > 2$$

(B)
$$3x + 5y > 7$$

(C)
$$3x + 5y < 7$$

(D)
$$3x - 7y < 3$$

17) The focus of the parabola $x^2 = 8y$ is

$$(A) (0, -2)$$

$$(C)(-2,0)$$

18) The eccentricity of the hyperbola is

(A)
$$e < 0$$

(B)
$$0 < e < 1$$

$$(C) e = 1$$

(D)
$$e > 1$$

19) The Centre of the circle $(x-1)^2 + (y+3)^2 = 3$ is

$$(C)(1,-3)$$

20) Which one of the following is not a unit vector,

1213 - 1222 - 29000

1222 Warning:- Please, do not write anything on this question paper except your Roll No. Mathematics (Subjective) (Inter Part - II) Time Allowed: 2.30 hours (Session 2018-20 to 2020-22) Maximum Marks: 80 Section --2. Answer briefly any Eight parts from the followings:- $8 \times 2 = 16$ Prove that $\cos h^2 x + \sin h^2 x = \cos h 2x$ (i) (ii) For the real valued function. $f(x) = 3x^3 + 7$, find $f^{-1}(x)$ Find $\lim_{\theta \to 0} \frac{1 - \cos \theta}{\sin \theta}$ (iv) Find $\lim_{h\to 0} (1-2h)^{\frac{1}{h}}$ (iii)

Find the value of m, such that function is continuous at x = 3 $f(x) = \begin{cases} mx & , x < 3 \\ x^2 & , x \ge 3 \end{cases}$ (v)

If $y = \frac{x^2 + 1}{x^2 - 1}$, find $\frac{dy}{dx}$. (vii) Find $\frac{dy}{dx}$ if $x = at^2$ and y = 2at

Differentiate $\sin^3 x$ w.r.t $\cos^2 x$. (ix) If $y = \cot^{-1} \left(\frac{x}{a}\right)$, Find $\frac{dy}{dx}$. (viii)

If $y = a^{\sqrt{x}}$, Find $\frac{dy}{dx}$. (xi) If $y = \ln(x^2 + 2x)$, Find $\frac{dy}{dx}$. (xii) If $y = \cos(ax + b)$, Find y_2 (x)

 $8 \times 2 = 16$

Answer briefly any Eight parts from the followings:-3.

Evaluate $\int x\sqrt{x^2-1} dx$ (ii) Evaluate $\int \frac{dx}{\sqrt{x+1-\sqrt{x}}}$ (i)

(iv) Find $\int \frac{1}{1+\cos x} dx$ Find $\int \tan^2 x \, dx$ (iii)

Evaluate $\int \frac{3x+1}{x^2-x+6} dx$ (vi) Evaluate $\int \frac{2x}{x^2-a^2} dx$, x > a(v)

Find δy and δy if $y = x^2 - 1$ when x changes from 3 to 3.02 (vii)

Find $|x \cos x| dx$ (viii)

(ix) Find the lines represented by the homogeneous equation $2x^2 + 3xy - 5y^2 = 0$

Find h such that A(-1, h), B(3, 2) and C(7, 3) are collinear. (x)

Find K so that the line joining A(7, 3), B(K, -6) and the line joining C(-4, 5), D(-6, 4) are parallel. (xi)

Prove that the following lines are concurrent. 3x-4y-3=0, 5x+12y+1=0, 32x+4y-17=0(xii)

> P.T.O 1214 - 1222 - 29000

- 4. Answer briefly any Nine parts from the followings: $9 \times 2 = 18$
- (i) Graph the solution set of the inequality $2x + y \le 6$ in xy plane
- (ii) Define corner point.
- (iii) Find an equation of the circle with ends of diameter at (-3, 2) and (5, -6)
- (iv) Write down equation of the tangent to the circle $3x^2 + 3y^2 + 5x 13y + 2 = 0$, at $\left(1, \frac{10}{3}\right)$
- (v) Find the directrix of the parabola $x^2 4x 8y + 4 = 0$
- (vi) Find an equation of the ellipse with vertices $(0, \pm 5)$ and eccentricity $\frac{3}{5}$
- (vii) Find vertices and directrices of the hyperbola $\frac{y^2}{16} \frac{x^2}{9} = 1$
- (viii) Find the points of intersection of the conics $3x^2 4y^2 = 12$ and $3y^2 2x^2 = 7$
- (ix) Find a unit vector in the direction of vector $\underline{v} = 2\underline{i} \underline{j}$
- (x) Find a vector whose magnitude is 4 and is parallel to $2\underline{i} 3\underline{j} + 6\underline{k}$
- (xi) If $\underline{a} = 2\underline{i} + j \underline{k}$ and $\underline{b} = \underline{i} j + \underline{k}$. Compute $\underline{a} \times \underline{b}$
- (xii) Find a real number α , so that the vectors $\underline{u} = \alpha \underline{i} + 2\alpha \underline{j} \underline{k}$ and $\underline{v} = \underline{i} + \alpha \underline{j} + 3\underline{k}$ are perpendicular
- (xiii) A force $\overline{F} = 7\underline{i} + 4\underline{j} 3\underline{k}$ is applied at P(1, -2, 3) Find its moment about the point Q(2, 1, 1)

Section ----- II

Note: Attempt any three questions.

 $(10\times3=30)$

- 5-(a) If θ is measured in radian, then show that $\lim_{\theta \to 0} \frac{\sin \theta}{\theta}$
 - **(b)** Show that $\frac{dy}{dx} = \frac{y}{x}$ if $\frac{y}{x} = Tan^{-1} \frac{x}{y}$
- 6-(a) Show that $\int \frac{dx}{\sqrt{x^2 a^2}} = \ln(x + \sqrt{x^2 a^2}) + c$
 - (b) The three points A(7, -1), B(-2, 2) and C(1, 4) are consecutive vertices of a parallelogram. Find the fourth vertex.
- 7 -(a) Evaluate definite integral. $\int_{0}^{x} \frac{\sin x}{(1+\cos x)(2+\cos x)} dx$
 - (b) Graph the feasible region of the system of linear inequalties and find the corner points. $x+2y \le 14$; $3x+4y \le 36$; $2x+y \le 10$; $x \ge 0$; $y \ge 0$
- **8-(a)** Find the angle measured from the line ℓ_1 to the line ℓ_2 where ℓ_1 : Joining (3, -1) and (5, 7) ℓ_2 : Joining (2, 4) and (-8, 2)
 - (b) Show that the ordinate at any point P of the parabola is a mean proportional between the length of the latusrectum and the abscissa of P.
- 9-(a) Discuss and Sketch the graph of the equation $4x^2 8x y^2 2y 1 = 0$
 - (b) A force $\vec{F} = 4\hat{i} 3\hat{k}$ passes through the point A(2, -2, 5). Find the moment of force \vec{F} about the point B(1, -3, 1).

1214 - 1222 - 29000