| Paper Code 200
Number: 4181 INTERMEDIATE | | 23 (1 st -A)
PART-II (12 th Class) | | Roll No: | | | | |---|---|--|----------------|----------------|--------------------------|--------------|--| | STA | ATISTICS PA | PER-II | MTN-12-23 | | | | | | TIN | ME ALLOWED | 20 Minutes | | | MAXIMUM MARKS: 17 | | | | Q.N | is correct, fill | r choices for each objective
that bubble in front of tha
es. Cutting or filling two or | t question num | ber, on bubl | ble sheet. Use mark | er or pen to | | | S.# | OU | ESTIONS | A | В | С | D | | | 1 | | ibution, X lies between: | -∞ and 0 | -∞ and + | ∞ 0 and $+\infty$ | -1 and +1 | | | 2 | Standard normal random variable is denoted by: | | Z | X | Y | ф | | | 3 | If $X \sim N(100, 25)$, then median is: | | 25 | 5 | 100 | . 0 | | | 4 | Sample size is denoted by: | | N | m | N(N-1) | n | | | 5 | Any measure of the sample is called: | | Parameter | Statistic | Constant | Sampling | | | 6 | The random digits from 0 to 9 have probability: | | 1/10 | $\frac{2}{10}$ | 10 | 1 100 | | | 7 | The statistical inference can be divided into approaches: | | Four | Three | Two | Five | | | 8 | Level of confidence is denoted by: | | · «5 | β | 1-β | 1-α | | | 9 | P (Rejecting H_0/H_0 is true) is equal to: | | $1-\alpha$ | α | 1+α | β | | | 10 | Dependent variable is also called: | | Predictor | Regresso | or Regressand | Fixed | | | 11 | The sum of the re | The sum of the residuals is: | | One | Two | Three | | | 12 | When two variables are uncorrelated the r is: | | -1 | +1 | 2 | 0 | | | 13 | For a contingency table $d.f. = 12$ and $r = 4$, the c is: | | 4 | 5 | 2 | 3 | | 40(Obj)(☆)-2023(1st-A)-2500 (MULTAN) -1 and +1 Histogram Cyclical variations RAM -1 and 0 Bar diagram Seasonal variations ROM 0 and 1 Historigram Secular trend ALU Rank correlation coefficient lies The graph of time series is called: The brain of the computer is known as: A rise in prices before eid is 14 15 16 17 between: an example of: -2 and 1 Curve Irregular variations CPU | INTERMEDIATE PART-II (12th Class) | 2023 (1 st -A) | Roll No: | |-----------------------------------|---------------------------|-------------------| | STATISTICS PAPER-II | MTN-12-2 | ? | | TIME ALLOWED: 2.40 Hours | | MAXIMUM MARKS: 68 | | | | ECTION | I-I | |--------|---|---------------------|--| | 2. A | ttempt any eight parts. | | 8 × 2 = 16 | | (i) | Define normal probability distribution. | (ii) | Express the term standard normal variate. | | (iii) | Enlist two properties of normal distribution. | (iv) | In a normal distribution, $\mu = 163$, $Q_3 - 171.094$.
Compute standard deviation of the given distribution. | | (v) | In a normal distribution, $\mu = 24$, $\sigma = 4$.
Calculate fourth moment about mean. | (vi) | Describe the term statistical inference. | | (vii) | Define an estimator. | (viii) | Elaborate type – II error. | | (ix) | Define level of significance. | (x) | Given $n = 16$, $s = 0.75$, $\overline{X} = 10.5$, $\mu_0 = 10$.
Compute the test statistic (t - test). | | (xi) | Describe a monitor. | (xii) | What is meant by byte? | | 3. At | tempt any eight parts. | J (All) | 8 × 2 = 16 | | (i) | Define sample. | (ii) | What is standard error? | | (iii) | Define the term bias. | (iv) | What is non-sampling error? | | (v) | Given $n = 9$, $\mu_{\overline{X}} = 4$, $\sigma_{\overline{X}} = 2.5$
find μ and σ . | (vi) | If $n = 40$, $\pi = 0.7$ then find μ_P and σ_P . | | (vii) | What is meant by regression? | (viii) | Define dependent variable. | | (ix) | Define the term correlation. | (x) | Interpret the meaning when $r = -1$. | | (xi) | Given that $\overline{x} = 1$, $\overline{y} = 8$, $b = 2$ find $y - $ intercept. | (xii) | If $\hat{y} = 11.8 + 2x$ and $\hat{x} = -5.5 + 0.5y$ then find r . | | 4. At | tempt any six parts. | | 6 × 2 = 12 | | (i) | Define a contingency table. | | | | (ii) | Given $(AB) = 95$, $(A\beta) = 55$, $(\alpha\beta) = 85$ | and $(\alpha\beta)$ |) = 45. Find the coefficient of association. | | (iii) | Given $f_0 = 7, 8, 15, 20$ and $f_e = 11.88, 12.8$ | | | | (iv) | Define a time series. | | | | (v) | Explain the term "Noise" in time series. | 7 | | | (vi) | Explain what is meant by seasonal variations? | | | | (vii) | Given $(Y - \hat{Y}) = 0.5, -0.5, 1, -1, 0.5, -0.5$ | 5. Find s | sum of squares of residuals. | | (viii) | Given $\hat{Y} = 10 + 3X$ find the trend values for | | | | (ix) | What do you mean by Historigram? | | | ## SECTION-II | <u>SECTION-II</u> | | | | | | |---|--|--|--|--|--| | E: Attempt any three questions. $3 \times 8 = 24$ | | | | | | | If the diameters of ball bearings are normally distributed with mean 0.6140 inches and standard deviation 0.002 inches. Determine the percentage of ball bearings with diameters. (i) less than 0.608 inches (ii) greater than 0.617 inches Scores on a national education achievement test are normally distributed with μ = 500 and σ = 100 (i) What is the 95th percentile of this distribution? (ii) What are the lower and upper quartiles of this distribution? | | | | | | | | | | | | | | If $N_1 = 400$, $N_2 = 200$, $n_1 = 100$, $n_2 = 110$, $\mu_1 = 500$, $\mu_2 = 800$, $\sigma_1 = 10$, $\sigma_2 = 10$ obtain mean and standard error of sampling distribution of $\overline{X}_1 - \overline{X}_2$. If sampling is done W.O.R. | | | | | | | If $\bar{x} = 100$, $s = 8$ and $n = 64$. Construct a 99% confidence interval for population mean (μ) . | | | | | | | A random sample of 25 values gives the average 83. Can this sample regarded as drawn from the normal population with mean 80 and $\sigma = 7$ with $\alpha = 0.05$ | | | | | | | Calculate correlation coefficient and interpret it between marks and study hours. Marks 10 15 9 21 7 Study Hours 2 3 1 4 1 | | | | | | | Fit a regression line to data given in part(a) to predict marks. Estimate marks when study hours are 5. | | | | | | | Given the following data. Find whether A and B are independent or associated. $n = 150$; $(A) = 30$; $(B) = 60$; $(AB) = 12$ | | | | | | | If the linear trend in the data for the years 1960 to 1965. Both inclusive with origin at the middle of 1962 and 1963 is $\hat{y} = 1306.667 + 73.428x$, the unit of x being one year, then determine the trend line with origin at 1960 and hence determine the trend values. | | | | | | | | | | | | |