	1 HD 12 -18 m. m. m.						
Roll No_	(To be filled in by the candidate) (Academic Sessions 2015 – 2017 & 2016 – 2018)						
STATIS	TICS 218-(INTER PART – II) Time Allowed: 20 Minutes						
	R - II (Objective Type) PAPER CODE = 8185 Maximum Marks: 17						
Note : F	our possible answers A, B, C and D to each question are given. The choice which you think is correct,						
f	ill that circle in front of that question with Marker or Pen ink in the answer-book. Cutting or filling						
_	wo or more circles will result in zero mark in that question.						
1-1	In simple linear regression the number of unknowns are:						
-	(A) One (B) Two (C) Three (D) Four						
2	The standard deviation of sampling distribution is:						
	(A) Dispersion (B) Difference (C) Average (D) Standard error						
3	A qualitative characteristic is:						
	(A) Constant (B) Quantitative variable (C) Attribute (D) None						
4	In normal distribution the value of constant π is:						
j	(A) $\frac{23}{6}$ (B) $\frac{22}{7}$ (C) $\frac{30}{9}$ (D) $\frac{42}{9}$						
	(A) $\frac{23}{6}$ (B) $\frac{22}{7}$ (C) $\frac{30}{9}$ (D) $\frac{42}{8}$						
5	One byte equals to:						
	(A) 8 bits (B) 4 bits (C) 7 bits (D) 13 bits						
6	P (type – I error) is equal to:						
	(A) α (B) β (C) θ (D) $1-\beta$						
7	The probability distribution of a statistic is:						
1	(A) Sampling (B) Parameter (C) Data (D) Sampling distribution						
8	In normal distribution the value of constant e is:						
	(A) 2.7183 (B) 2.8173 (C) 2.1792 (D) 1.2345						
9	The value of correlation co-efficient lies between:						
1	(A) 0 and 1 (B) -1 and 0 (C) -1 and +1 (D) 0 and 2						
10	The additive model of time series is:						
1	(A) $Y = T + C + S + I$ (B) $Y = TCSI$ (C) $T - C - S - I$ (D) $T + C - S - I$						
11	The number of degrees of freedom for paired t-test based on n pairs of observation is:						
111							
12	(A) $2n-1$ (B) $n-2$ (C) $2(n-1)$ (D) $n-1$ The sample is subset of:						
12							
12	(A) Data (B) Population (C) Parameter (D) Distribution In semi average method if number of values is odd then we drop from initial two halves:						
13	and .						
	(A) First value (B) Last value (C) Middle value (D) 2 nd value						
14	Estimate and estimator are:						
	(A) Same (B) Different (C) Both A and B (D) Neither A nor B						
15	If X is N (100, 64) then S.D is:						
	(A) 18 (B) 100 (C) 8 (D) 91						
16	The signs of regression co-efficients and correlation co-efficient are always:						

17

(A) Different

(A) 4

rank of score 12 is:

(D) One

(D) 3

(C) Zero

(C) 1

In converting the score 18, 24, 12, 22, 33 to ranks (assigning rank 1 to highest score) the

(B) Same

(B) 5

(To be filled in by the candidate) (Academic Sessions 2015 - 2017 & 2016 - 2018) Roll No Time Allowed: 2.40 hours 218-(INTER PART – II) STATISTICS _ Maximum Marks: 68 PAPER – II (Essay Type) SECTION - I LHR-12-18 2. Write short answers to any EIGHT (8) questions : 16 (i) In a normal distribution $Q_1 = 8$, $Q_3 = 17$. Find the value of mean and mode. (ii) Write the probability density function of standard normal distribution. (iii) If $Z \sim N(0, 1)$, then find P[|z| < 1.64](iv) Write four properties of standard normal distribution. (v) Find the ordinate of the standard normal curve at z = -0.84(vi) Define interval estimation. (vii) Differentiate between estimator and estimate. (viii) What are the assumptions of student's t-Statistic? (ix) Define level of significance. (x) Given $\overline{X} = 28$, $\mu_0 = 28$. Find the value of z-score. (xi) What is computer software? (xii) What is a compiler? 3. Write short answers to any EIGHT (8) questions : 16 (i) What is population? (ii) What is non-sampling error? (iii) What is standard error? (iv) Explain the properties of the sampling distribution of a mean. (v) Given $N_1 = 3$, $n_1 = 2$ and $N_2 = 4$, $n_2 = 2$. If $\sigma_1^2 = \frac{8}{3}$ and $\sigma_2^2 = \frac{5}{4}$ $var(\overline{X}_1 - \overline{X}_2)$ when sampling is done without replacement: (vi) Distinguish between finite and infinite population. (vii) Sketch scatter diagram indicating negative correlation. (viii) Explain the term regression coefficient. (ix) Given x = 2, 4, 6 and y = 4, 4, 4, find simple correlation coefficient. (x) Write the relationship between regression coefficient and correlation coefficient. (xi) What is curve fitting? (xii) If $\Sigma(X-\overline{X})(Y-\overline{Y}) = 8400$ and $\Sigma(X-\overline{X})^2 = 2800$, find $b_{yx} = ?$ 12 4. Write short answers to any SIX (6) questions : (i) Define the term Dichotomy for attributes. (ii) What is positive and negative association? (iii) What is contrary classes? (iv) Define independence of attributes. (v) What is contingency table? (vi) If $\hat{y} = 10 + 3x$, find the trend values for x = 1, 2, 3, 4? (vii) Define principle of least square. (viii) Write down two properties of least square line. (ix) Enlist the different methods of measuring secular trend. (Turn Over)

(2)

SECTION - II

LHR-12-18

Note: Attempt any THREE questions.

- 5. (a) In a normal distribution $\mu = 47.6$ and $\sigma = 16.2$, find :
 - (i) P_{90} (ii) Two points such that any value has 95% probability of falling between them.
 - (b) If X ~ N (60, 100), where X indicate marks obtained by student, find probability that a student selected at random obtains marks : (i) less than 56 (ii) more than 50
- 6. (a) Draw all possible samples of size 2 with replacement from a population 2, 4, 6 make sampling distribution of sample mean. Also find (i) $\mu_{\overline{x}}$ (ii) $\sigma_{\overline{x}}$
 - (b) If $n_1 = 10$, $n_2 = 15$ $\mu_1 = 30$, $\mu_2 = 10$ $\sigma_1^2 = 5$, $\sigma_2^2 = 6$ find (i) $\mu_{\overline{x}_1-\overline{x}_2}$ (ii) $\sigma_{\overline{x}_1-\overline{x}_2}$ if sampling is done with replacement
- 7. (a) Given the following summary statistics:

$n_1 = 40$	$\overline{x}_1 = 90$	$\sigma_1 = 15$
$n_2 = 50$	$\bar{x}_2 = 100$	$\sigma_2 = 20$

*an.co Construct 95% confidence interval for $\mu_2 - \mu_1$

- (b) Test the null hypothesis $H_0: \mu_1 = \mu_2$ against alternative hypothesis $H_1: \mu_1 \neq \mu_2$ at $\alpha = 0.05$ using the data given in part (a).
- 8. (a) Fit the regression line of Y on X to given data and show that $\Sigma(Y \hat{Y}) = 0$

X	1	2	3	4	5
Y	1.	1	2	2	4

(b) Compute and interpret the co-efficient of correlation between the values of X and Y from the data given below:

X	5	10	15	20	25
Y	12	14	20	18	16

9. (a) Find co-efficient of association from the following data:

** · 1 · C	Height of father		
Height of son	Tall	Short	
Tall	500	100	
Short	100	400	

(b) Compute the trend values by method of semi-average for the following data:

Year	1921	1922	1923	1924	1925
Values	-15	18	17	42	38

4

4

4