hink	is correct, fill that bu	ibble in front of that o	question number. Use	, C and D. The choice which you marker or pen to fill the bubbl		
	0			question. Attempt as many		
				lank. No credit will be awarded OBJECTIVE PAPER.		
Q.No.	.1					
1)	The value of \mathcal{E}_r fo	r air is:-				
	(A) 1.6	(B) 1.06	(C) 1.006	(D) 1.0006		
(2)	In case of photocopie	er, a special dry, black	powder called toner is	given a:-		
	(A)Positive charge	(B) Negative charge	(C) Neutral	(D) First positive then negative		
3)	The potential difference between the head and tail of an electric eel can be up to:-					
	(A) 500 V	(B) 600 V	(C) 700 V	(D) 800 V		
4)	The current flowing	towards the reader can	be represented by a sy	mbol;-		
	(A) Dot	(B) Dash	(C) Cross	(D) Line		
5)	The vector sum of th	ne electric force and ma	ignetic force is known	as:-		
	(A) Maximum force	(B) Lorentz force	(C) Deflecting force	(D) Newton's force		
5)		nergy density of soleno		8		
	(A) $\frac{B^2}{a}$	(B) $2\frac{B^2}{\mu_0}$	(C) $\frac{1}{2} \frac{B^2}{\mu}$	(D) $B^2 \mu_o$		
7)	μ_o A simple device that	μ_o prevents the direction of	2000	g is called:-		
,	(A) Commutator	(B) Rotor	(C) Armature	(D) Detector		
8)	The unit of impedance	A. (20)				
,	(A) Volt	(B) Ohm	(C) Farad	(D) Watt		
9)		haviour of R - L - C s				
,	(A) Resistive	(B) Capacitive	(C) Inductive	(D) Modulative		
10)	Glass is also known as:-					
	(A) Solid	(B) Liquid	(C) Solid liquid	(D) Gas		
11)	MALIAN .	of Op - Amp is of the o	0, 54			
,	(A) 10 ²	(B) 10 ³	(C) 10 ⁴	(D) 10 ⁵		
12)		current amplification	7, 5			
	•			I.		
	(A) $\frac{I_C}{I_C}$	(B) $\frac{I_C}{I_C}$	(C) $\frac{I_E}{I_B}$	(D) $\frac{I_B}{I_C}$		
13)	The speed of earth a	* B	- B	- <u>E</u>		
,	(A) $10 km/s$	(B) $20 km / s$	(C) 25 km/s	(D) $30 km / s$		
			(0) 20 mm	(2)		
14)	The unit of Plank's		(C) JS	(D) 1/C		
15)	(A) JC	(B) J/C aser, the discharge tube	(-)	(D) J/S		
15)		(B) 80 % of He	(C) 90 % of He	(D) 95 % of <i>He</i>		
	(A) 85 % of He	(B) 80 70 01 HE	(0) 10 10 01 116	(-),		
16)	The half-life of rado	n ann in:				

2018 (A)

Roll	No:	
------	-----	--

INTERMEDIATE PART-II (12th CLASS)

HYSICS PAPER-II (NEW SCHEME)

GROUP-II MTN-G2-12-18

TIME ALLOWED: 2.40 Hours

SUBJECTIVE

MAXIMUM MARKS: 68

NOTE: - Write same question number and its part number on answer book, as given in the question paper.

SECTION-I

Attempt any eight parts.

 $8 \times 2 = 16$

- (i) How can you identify that which plate of a capacitor is negatively charged?
- (ii) Electric lines of force never cross. Why?
- (iii) Prove that $1eV = 1.6 \times 10^{-19} J$
- (iv) Explain briefly the role of deflection plates in inkjet printers.
- (v) Why does the picture on a T.V screen become distorted when a magnet is brought near it?
- (vi) How can you use a magnetic field to separate isotopes of chemical element?
- (vii) Explain briefly the working of electron gun in CRO.
- (viii) Differentiate between magnetic flux and flux density.
- (ix) Does the induced emf always act to decrease the magnetic flux through a circuit? Explain.
- (x) Is it possible to change both the area of the loop and the magnetic field passing through the loop and still not have an induced emf in the loop? Explain
- (xi) A glass rod of length L' is moving perpendicular to the applied magnetic field B with velocity V. Explain briefly about the induced emf in it.
- (xii) Define self inductance. Name any two factors upon which it depends.

Attempt any eight parts.

 $8 \times 2 = 16$

- (i) Is the filament resistance lower or higher in a 500 W, 220 V light bulb than in a 100W, 220 V bulb?
- (ii) What is Wheatstone bridge? How can it be used to determine an unknown resistance?
- (iii) What is Thermistor? Write its two uses.
- (iv) What is the principle of Metal Detector? Write two uses of metal detector.
- (v) How can you establish the formula for power in A.C circuits? Explain the role of power factor in it.
- (vi) How does doubling of frequency affect the reactance of (a) An inductor (b) A capacitor?
- (vii) Define Polymerization Reaction. Write two examples of Polymeric solids.
- (viii) Define Brittle and Ductile Substances. Give two examples in each case.
- (ix) Why is it impossible to have an isolated north or south pole of magnet? Explain.
- (x) What is the role of potential barrier in a diode? How is it formed in a diode?
- (xi) Describe by a circuit diagram, how current flows in a n p n transistor?
- (xii) How is the XOR gate so called? Draw its symbol.

Attempt any six parts.

 $6 \times 2 = 12$

- (i) Differentiate between Photoelectric Effect and Compton Effect.
- (ii) What are the measurements on which two observers in relative motion will always agree upon? Explain
- (iii) Will bright light eject more electrons from a metal surface than dimmer light of the same colour?
- (iv) Write any two Postulates of Bohr's model of the Hydrogen storm
 - (v) What do we mean when we say that the above a reason

- (vi) A particle which produces more ionization is less penetrating. Explain.
- (vii) Why are heavy Nuclei Unstable? Explain.
- (viii) What is meant by Absorbed Dose? Write its unit.
- (ix) Define Hadrons and Leptons.

SECTION-II

NOTE: - Attempt any three questions.

 $3 \times 8 = 24$

5.(a) Define Resistivity. How does it depend upon temperature? Also define temperature coefficient of resistance.

1 + 3 + 1 = 5

(b) Determine the electric field at the position $\vec{r} = (4\hat{i} + 3\hat{j}) \, m$ caused by a point charge $q = 5.0 \times 10^{-6} \, C$ placed at origin.

3

6.(a) Derive the relation for energy stored in an inductor.

5

3

(b) A power line 10.0 m high carries a current 200 A. Find the magnetic field of the wire at the ground.

7.(a) What is Transistor? Describe the use of transistor as an amplifier. Also calculate its voltage gain.

1+2+2

(b) What is the resonant frequency of a circuit which includes a coil of inductance 2.5 H and a capacitance of $40 \mu F$?

3

- 8.(a) Define Positron. How Davison and Germer experiment confirms the wave nature of particles? 1+4
 - (b) A 1.25 cm diameter cylinder is subjected to a load of 2500 Kg. Calculate the stress on the bar in mega pascals.

3

9.(a) Define Spontaneous and Stimulated emissions. Explain the Laser action in detail.

1+1+3

- (b) A 75 kg person receives a whole body radiation dose of 24 m rad, delivered by α particles for which RBE factor is 12. Calculate (a) The absorbed energy in Joules and
 - (b) The equivalent dose in rem.

3