Paper Code Number: 4195		2023 (1 st -A) INTERMEDIATE PART-II (12 th Class)			Roll No:	
MATHEMATICS PAPER-II			GROUP-I	MTN-12	2-1-23	
TIM	E ALLOWED	: 30 Minutes	OBJE	ECTIVE N	AXIMUM M	ARKS: 20
Q.No	is correct, fill t	hat bubble in from	objective type quest nt of that question g two or more bub	number, on bubb	le sheet. Use mar	ker or pen to
S.#	QUEST		A	В	C	D
1	Slope of line perp the line $x + 2y +$		$-\frac{1}{2}$	$\frac{1}{2}$	2	$\frac{3}{2}$
2	Distance of the position x – axis is:	pint (3, 2)	2	3	5	6
3	The lines ℓ_1 , ℓ_2 and ℓ_2 are parall		$m_1 + m_2 = 0$	$m_1m_2=1$	$m_1m_2=-1$	$m_1 = m_2$
4	x = 5 is the solutinequality:		2x + 3 < 0	2x - 3 > 0	x + 1 < 0	x < 0
5	The centre of the $(x+1)^2 + (y+1)^2$		(1,2)	(-1, 2)	(-1; -2)	(1, -2)
6	An angle in semi- measure:	circle is of	30"	45°	60	90°
7	The parabola y^2 opens towards:	$= 4ax; \ a > 0$	Left	Right	Upward	Downward
8	In an ellipse, the	foci lie on:	Major axis	Minor axis	Directrices	Centre
9	Work done by a \vec{F} during displace equal to	_	$\vec{F} \times \vec{d}$	F	F-d	$ar{d} imesar{F}$
10	If \vec{a} and \vec{b} vectors, then \vec{a}	CONTRACTOR OF THE PARTY OF THE	ab ab	ā, b	$\vec{b} \times \vec{a}$	$-\vec{b} \times \vec{a}$
11	$\lim_{x \to +\infty} (e^x) =$		-00	0	1	+∞
12	$f(x) = x + \sin a / \sin a$	n:	Odd function	Even function	Neither even nor odd	Constant function
13	If $C \in D_f$ and $f'(C)$ does not number C is call	exist, then the	Increasing value	Decreasing value	Stationary value	Critical value
14	$1+x+\frac{x^2}{12}+\frac{x^3}{13}$	+4	$\sin x$	cosx	e ^x	e^{2x}
15	$\frac{d}{dx}(a^x) =$		a ^x	a ^x . lna	$\frac{a^x}{\ell na}$	lna a*
16	The notation $f'($ the mathematicia		Lagrange	Newton	Cauchy	Leibniz
17	$\int \tan x dx =$		$ln \sin x + c$	$\ell n \cos x + c$	$\ell n \sec x + c$	$\ell n \tan x + c$
18	$\int \left(\frac{1}{x} + \frac{\sin 2x}{\sin^2 x}\right) dx$	dx =	$ln\sin 2x + c$	$\ell n(x\sin^2 x) + c$	$\ell n(x\cos^2 x) + c$	$\ell n(x\sin 2x) + c$
19	$\int e^{2x} dx =$		$2e^{2x}+c$	$e^{2x}+c$	$2xe^{2x}+c$	$\frac{e^{2x}}{2}+c$
20	$\int_{0}^{\pi/2} \cos x dx =$		0	1	2	3

14(Obj)(★★★)-2023(1st-A)-15000 (MULTAN)

202 INTERMEDIAT	23 (1 st -A) E PART-II (12 th Class)	Roll No: 1/1/2-1-23	
MATHEMATICS PAPER-II GROUP-I		TARREST AND DAYS. OA	
TIME ALLOWED: 2.30 Hours	SUBJECTIVE	MAXIMUM MARKS: 80	
NOTE: Write same question number and its	parts number on answer bo	ook, as given in the question paper.	
	SECTION-I		

	SEC	TION-I			
2. At	tempt any eight parts.	(ii)	8 × 2 = 16		
(i)	What is a function?		Prove the identity $\cosh^2 x - \sinh^2 x = 1$		
(iii)	Given that $f(x) = x^3 - 2x^2 + 4x - 1$ find $f\left(\frac{1}{x}\right)$		Differentiate w.r.t. $x \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2$		
(v)	Find $\frac{dy}{dx}$ if $\sqrt{x+\sqrt{x}}$	(vi)	Find $\frac{dy}{dx}$ if $y = x \cos y$		
(vii)	Differentiate $y = e^{f(x)}$ w.r.t. x		Differentiate sin x w.r.t. cot x		
(ix)	Find y_4 if $y = \sin 3x$		What is a stationary point?		
(xi)	Define problem constraint.		Define feasible region and feasible solution.		
	tempt any eight parts.		8 × 2 = 16		
(i)	Find δy and dy , if $y = x^2 - 1$, when x changes from 3 to 3.02.	(ii)	Evaluate $\int \sin(a+b)x dx$		
(iii)	Evaluate $\int \frac{-2x}{\sqrt{4-x^2}} dx$		Evaluate $\int x . \ln x dx$		
(v)	Evaluate $\int_{1}^{2} (x^2 + 1) dx$	(vi)	Find the area between the x – axis and the curve $y = \sin 2x$ from $x = 0$ to $x = \pi/3$		
(vii)	Solve $\frac{dy}{dx} = -y$	(viii)	Find the unit vector of $\underline{v} = 2\underline{i} - \underline{j}$		
(ix)	Write direction consines of $\underline{y} = 4\underline{i} - 5\underline{j}$	(x)	Find the cosine of the angle θ between \underline{u} and \underline{v} , $\underline{u} = [2, -3, 1], \underline{v} = [2, 4, 1]$		
(xi)	Prove that $\underline{a} \times (\underline{b} + \underline{c}) + \underline{b} \times (\underline{c} + \underline{a}) + \underline{c} \times (\underline{a} + \underline{b}) = 0$		Find the volume of the parallelepiped for which the given vectors are $\underline{u} = \underline{i} - 4\underline{j} - \underline{k}$; $\underline{v} = \underline{i} - \underline{j} - 2\underline{k}$; $\underline{w} = 2\underline{i} - 3\underline{j} + \underline{k}$ $9 \times 2 = 18$		
4. At	tempt any nine parts.				
(i)	Find h such that $A(-1, h)$, $B(3, 2)$ and (C(7,3)	are collinear.		
(ii)	The xy - coordinate axes are rotated about the origin through an angle of 30° . If the xy - coordinates of a point are (5.7), find its XY - coordinates, where OX and OY are the axes obtained after rotation.				
(iii)	Find the distance between the parallel lines $2x + y + 2 = 0$ and $6x + 3y - 8 = 0$				
(iv)	Check whether the point $(-2,4)$ lies above or below the line $4x + 5y - 3 = 0$				
(v)	Find the area of the region bounded by the triangle with vertices $(a, b+c)$, $(a, b-c)$ and $(-a, c)$				
(vi)	By means of slopes, show that the following points lie on the same line (-4, 6), (3, 8), (10, 10)				
(vii)	Find an equation of the line bisecting the first and third quadrants.				
(viii)	Find the centre and radius of the circle with the equation $4x^2 + 4y^2 - 8x + 12y - 25 = 0$				
(ix)	Find the length of the tangent from the point $P(-5, 10)$ to the circle $5x^2 + 5y^2 + 14x + 12y - 10 = 0$				
(x)	Write an equation of the parabola with given elements focus $(-3, 1)$, directrix $x - 2y - 3 = 0$				
(xi)	Find an equation of the ellipse with vertices $(0, \pm 5)$ and eccentricity $\frac{3}{5}$.				
(xii)	Find an equation of the hyperbola with the given data. Foci $(2 \pm 5\sqrt{2}, -7)$ and length of transverse axis 10.				
(xiii)	Find an equation of the circle with ends of diameter at $(-3, 2)$ and $(5, -6)$				

			SECTION-II			
NOTI	E: Attempt any three questions.		$3 \times 10 = 30$			
NOTI 5.(a)	Evaluate $\lim_{\theta \to 0} \frac{\tan \theta - \sin \theta}{\sin^3 \theta}$	(b)	If $x = a\cos^3\theta$, $y = b\sin^3\theta$ then show that $a\frac{dy}{dx} + b\tan\theta = 0$			
6.(a)	Evaluate $\int \frac{dx}{\sqrt{7 - 6x - x^2}}$	(b)	Find the equation of perpendicular bisector of the segment joining the points $A(3, 5)$ and $B(9, 8)$			
7.(a)	Evaluate $\int_{\frac{\pi}{4}}^{\frac{\pi}{4}} \cos^2\theta \cot^2\theta \ d\theta$	(b)	Maximize $f(x, y) = 2x + 3y$ subject to constraints $2x + y \le 8$, $x + 2y \le 14$, $x \ge 0$, $y \ge 0$			
8.(a)	If $y = a\cos(\ln x) + b\sin(\ln x)$, prove that $x^2 \frac{d^2y}{dx^2} + x\frac{dy}{dx} + y = 0$					
(b)	Find the length of the chord cut from the line $2x + 3y = 13$ by the circle $x^2 + y^2 = 26$					
9.(a)	Show that an equation of the parabola with focus at $(a\cos\alpha, a\sin\alpha)$ and directrix $x\cos\alpha + y\sin\alpha + a = 0$ is $(x\sin\alpha - y\cos\alpha)^2 = 4a(x\cos\alpha + y\sin\alpha)$					
(b)	Prove that the line segment joining mid points of two sides of a triangle is parallel to third side and half as long					
			14-2023(1st-A)-15000 (MULTAN			