| aper Code            |                                        | 2023 (1 <sup>st</sup> -A)<br>INTERMEDIATE PART-II (12 <sup>th</sup> Class) |                        |                          | Roll No:                                      |                           |
|----------------------|----------------------------------------|----------------------------------------------------------------------------|------------------------|--------------------------|-----------------------------------------------|---------------------------|
| Number: 4196         |                                        |                                                                            |                        | 0.00                     |                                               |                           |
| MATHEMATICS PAPER-II |                                        | PAPER-II                                                                   |                        |                          | 12-2-23                                       |                           |
| ГІМІ                 | E ALLOWED                              | : 30 Minutes                                                               | OBJEC                  | CTIVE                    | MAXIMUM MA                                    | RKS: 20                   |
| Q.No.                | T                                      | choices for each objethat bubble in front of                               | ective type question   | n as A, B, C an          | id D. The choice will<br>ble sheet. Use marke | r or pen to               |
|                      | is correct, fill                       | that bubble in front of s. Cutting or filling ty                           | wo or more bubble      | es will result in        | zero mark in that q                           | uestion.                  |
| S.#                  | OUES                                   | TIONS                                                                      | A                      | В                        |                                               |                           |
| 1                    | Slope of line whi                      | ch is perpendicular                                                        | 0                      | 1                        | 2                                             | Undefined                 |
|                      | to $y - axis is$ :                     |                                                                            |                        |                          |                                               |                           |
|                      |                                        | La line                                                                    | 2/                     | 5/                       | 3/5                                           | 5/3                       |
| 2                    | y – intercept of t                     |                                                                            | 2/5                    | 5/2                      | /5                                            | /3                        |
|                      | 2x + 3y - 5 = 0                        | IS:                                                                        |                        |                          |                                               | 0.0                       |
| 3                    | The point of inter                     | rsection of medians                                                        | Incentre               | Centroid                 | Circumcentre                                  | Orthocenter               |
|                      | of a triangle is ca                    | illed:                                                                     |                        |                          | The .                                         |                           |
| _                    |                                        |                                                                            | x-3y>0                 | x - 57 5 0               | y + y > 0                                     | x < 0                     |
| 4                    | (0, 1) is the solution of inequality:  |                                                                            |                        | Co-vertices              | Foci                                          | Eccentricity              |
| 5                    | The end points o                       | f minor axis of the                                                        | Vertices               | Co-vertices              | OCI                                           | Decemarion                |
|                      | ellipse are called                     | its:                                                                       |                        |                          |                                               | 0                         |
| 6                    | The length of lat                      | us rectum of                                                               | -8                     | 4                        |                                               | 8                         |
|                      | parabola $y^2 = -$                     | 8x is:                                                                     |                        | All land                 |                                               | l                         |
|                      |                                        |                                                                            | - Con 200 0            | (1, -2)                  | (-1, -2)                                      | (1, 2)                    |
| 7                    | The vertex of the                      |                                                                            | 7576                   | (1, 2)                   |                                               |                           |
|                      | $(x+1)^2 = 8(y-1)$                     | -2) is:                                                                    |                        |                          |                                               | 1                         |
| 8                    | The length of dia                      | ameter of the circle                                                       | 4                      | 6                        | 8                                             | 16                        |
| 0                    | $x^2 + y^2 = 16$ is:                   |                                                                            | A A                    |                          | Property of the second                        |                           |
|                      |                                        |                                                                            |                        | Vederbreduc              | t Inner product                               | Meaningless               |
| 9                    | $\bar{u} \times (\bar{v}.\bar{w})$ is: | A                                                                          | Scalar                 | vector preduc            | inner product                                 |                           |
|                      | A NO.                                  |                                                                            | product                | V CONTRACTOR             |                                               | 2                         |
| 10                   | The value of $\hat{i}$                 | 7                                                                          | -1                     | 0                        | 1                                             | 2                         |
| 10                   | The value of [.                        | 7                                                                          |                        | 0                        | 1                                             | +∞                        |
| 11                   | $\lim_{x \to -\infty} (e^x) =$         |                                                                            | - ∞                    |                          |                                               |                           |
|                      |                                        |                                                                            | A 01                   | Even function            | Constant                                      | Linear                    |
| 12                   | $f(x) = \sin x$ i                      | is:                                                                        | Odd                    | Tunction                 | function                                      | function                  |
|                      |                                        |                                                                            | Tunction               |                          |                                               | 1                         |
| 13                   | 1                                      |                                                                            | 1 1                    | $\frac{1}{-} - 1$        | $1 - \frac{1}{x^2}$                           | $\frac{1}{x^2}-1$         |
|                      | If $y = x + \frac{1}{x}$               | then =                                                                     | x                      | x                        | x <sup>2</sup>                                | x -                       |
|                      |                                        |                                                                            | 1                      | 1                        | -1                                            | -1                        |
| 14                   | If $y = \sinh^{-1} x$                  | then then                                                                  | 1                      | $\frac{1}{\sqrt{x^2-1}}$ | $\sqrt{x^2+1}$                                | $\frac{-1}{\sqrt{x^2-1}}$ |
|                      |                                        | dy                                                                         | $\sqrt{x^2+1}$         | $\sqrt{x^2-1}$           | VX +1                                         | \"                        |
|                      |                                        | and the same is:                                                           | $-\sin x$              | sin x                    | 0                                             | 1                         |
| 15                   | Derivative of c                        | $\cos x$ w.r.t. $\cos x$ is:                                               |                        |                          | 1                                             | 2                         |
| 16                   | The function                           | $f(x) = 3x^2$ has                                                          | -1                     | 0                        | 1                                             |                           |
|                      | minimum value                          |                                                                            |                        |                          |                                               |                           |
| 17                   | T T                                    |                                                                            | 0                      | 1                        | 2                                             | 3                         |
| 17                   | $\int \sin x  dx =$                    |                                                                            |                        |                          |                                               |                           |
| 1                    | π                                      |                                                                            |                        |                          |                                               | 21.                       |
| 18                   | If $y = x^3$ , the                     | dv =                                                                       | $3x^2$                 | $x^2 dx$                 | $3x^2dx$                                      | 3xdx                      |
| 10                   | y = x, the                             |                                                                            |                        | a                        | -b                                            | -b                        |
| 19                   | 5 64 3 1                               |                                                                            | $\int_{0}^{a} f(x) dx$ | $-\int f(x)dx$           | $\int f(x)dx$                                 | $-\int f(x)dx$            |
|                      | $\int f(x) dx =$                       |                                                                            | 6                      | 6                        | -a                                            | -a                        |
|                      | а                                      |                                                                            | 0 5 ( 4 ) 1 2          | ln f'(x) +               | $c = \ell n f(x) f'(x) + c$                   | lnx + c                   |
| 20                   | $\int f'(x) dx -$                      |                                                                            | $\ell n f(x) + c$      |                          |                                               |                           |
|                      | $\int \frac{f'(x)}{f(x)} dx =$         |                                                                            |                        |                          |                                               |                           |
|                      |                                        |                                                                            | 14                     | (Ohi)(++                 | ★)-2023(1 <sup>st</sup> -A)-110               | 00 (MULTAI                |
|                      |                                        |                                                                            | 10                     |                          | ,,                                            |                           |

|                                                                              | (F)                                |                                      |
|------------------------------------------------------------------------------|------------------------------------|--------------------------------------|
| INTERMEDIATE PART-II (12th Class)                                            | 2023 (1 <sup>st</sup> -A) Roll No: |                                      |
| MATHEMATICS PAPER-II GROUP-II                                                | UBJECTIVE                          | MAXIMUM MARKS: 80                    |
| TIME ALLOWED: 2.30 Hours S NOTE: Write same question number and its parts in | umber on answer bo                 | ook, as given in the question paper. |
| NOTE: Write same question number and its parts                               | TION-I M7                          | N-12-2-23                            |

| OTE:          | : Write same question number and its parts null<br>SECT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ION-I                                                                                                                                                                                                                                                                                     | $M7N-12-2-23$ $8\times 2=16$                                                                                                      |  |  |  |
|---------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| 144           | tempt any eight parts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                           |                                                                                                                                   |  |  |  |
| (i)           | Define a polynomial function of degree $n$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (ii)                                                                                                                                                                                                                                                                                      | Determine whether given function $f$ is even or odd $f(x) = x^{2/3} + 6$                                                          |  |  |  |
| iii)          | Evaluate $\lim_{n\to\infty} \left(1+\frac{3}{n}\right)^{2n}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | (iv)                                                                                                                                                                                                                                                                                      | Find the derivative of $x^{\frac{2}{3}}$ and also calculate the value of derivative at $x = 8$ .                                  |  |  |  |
| (v)           | Differentiate w.r.t. $x^{-3} + 2x^{-\frac{3}{2}} + 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (vi)                                                                                                                                                                                                                                                                                      | Find $\frac{dy}{dx}$ if $xy + y^2 = 2$                                                                                            |  |  |  |
| vii)          | Find $\frac{dy}{dx}$ if $x = y \sin y$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | (viii)                                                                                                                                                                                                                                                                                    | Differentiate w.r.t. $x 	ext{ } x^2 \sec 4x$                                                                                      |  |  |  |
| (ix)          | Find $\frac{dy}{dx}$ if $y = e^{x^2 + 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | (x)                                                                                                                                                                                                                                                                                       | State Maclaurin's series expansion.                                                                                               |  |  |  |
|               | dx                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (xii)                                                                                                                                                                                                                                                                                     | Define the associated emotion of an inequality.<br>$8 \times 2 = 16$                                                              |  |  |  |
| (xi)          | Define optimal solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                           | 8 X Z = 10                                                                                                                        |  |  |  |
|               | ttempt any eight parts.<br>Find $\delta y$ and $dy$ for $y = x^2 - 1$ , when $x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (ii)                                                                                                                                                                                                                                                                                      | Evaluate $\int \left(\sqrt{x} - \frac{1}{\sqrt{x}}\right)^2 dx$                                                                   |  |  |  |
| (i)           | Find by and by 101 y = 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                           |                                                                                                                                   |  |  |  |
| (iii)         | changes from 3 to 3.02.<br>Evaluate $\int \frac{x^2}{4+x^2} dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (iv)                                                                                                                                                                                                                                                                                      | Evaluate $\int x^2 \ell nx  dx$                                                                                                   |  |  |  |
| (v)           | Evaluate $\int_{1}^{1} (x^{\frac{1}{3}} + 1) dx$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | (vi)                                                                                                                                                                                                                                                                                      | Find the area between the $x$ – axis and the curve $y=4x-x^2$                                                                     |  |  |  |
| (vii)         | Solve the differential equation $\frac{dy}{dx} = \frac{y}{x^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (viii)                                                                                                                                                                                                                                                                                    | Find unit vector in the direction of $\underline{v} = 2\underline{i} - \underline{j}$                                             |  |  |  |
| (ix)          | Find vector whose magnitude is 4 and is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (x)                                                                                                                                                                                                                                                                                       | Calculate the projection of $\underline{a} = \underline{i} - \underline{k}$ along $\underline{b} = \underline{i} + \underline{k}$ |  |  |  |
| (-1)          | parallel to $2\underline{i} - 3\underline{j} + 6\underline{k}$<br>Find a unit vector perpendicular to the plane                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (xii)                                                                                                                                                                                                                                                                                     | Prove that $\underline{i} - 2\underline{j} + 3\underline{k}$ , $-2\underline{i} + 3\underline{j} - 4\underline{k}$ and            |  |  |  |
| (xi)          | containing $\underline{a}$ and $\underline{b}$ , $\underline{a} = \underline{i} + \underline{j}$ , $\underline{b} = \underline{i} - \underline{j}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                           | $\underline{i} = 3\underline{j} + 5\underline{k}$ are coplanar.                                                                   |  |  |  |
|               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                           | 9 X Z - 10                                                                                                                        |  |  |  |
|               | Attempt any nine parts.  Show that the points $A(3, 1)$ , $B(-2, -3)$ and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | C(2, 2) 8                                                                                                                                                                                                                                                                                 | are vertices of an isosceles triangle.                                                                                            |  |  |  |
| (i)           | Show that the points $A(3,1)$ , $B(-2,-3)$ and $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | (6 0) ar                                                                                                                                                                                                                                                                                  | e collinear.                                                                                                                      |  |  |  |
| (ii)<br>(iii) | Show that the points $A(-3, 6)$ , $B(3, 2)$ and $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Show that the points $A(-3, 6)$ , $B(3, 2)$ and $C(6, 0)$ are collinear.<br>Show that the points $A(-3, 6)$ , $B(3, 2)$ and $C(6, 0)$ are collinear.<br>Find an equation of the straight line if it is perpendicular to a line with slope $-6$ and its $y$ – intercept is $\frac{4}{3}$ . |                                                                                                                                   |  |  |  |
| (111)         | Write down an equation of the line which cu                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | te the Y                                                                                                                                                                                                                                                                                  | - axis at $(2, 0)$ and $y$ - axis at $(0, -4)$ .                                                                                  |  |  |  |
| (iv)          | Write down an equation of the line which ca                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | into two                                                                                                                                                                                                                                                                                  | o-intercept form.                                                                                                                 |  |  |  |
| (v)           | Transform the equation $5x - 12y + 39 = 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Write down an equation $5x - 12y + 39 = 0$ into two-intercept form.  Transform the equation $5x - 12y + 39 = 0$ into two-intercept form.                                                                                                                                                  |                                                                                                                                   |  |  |  |
| (vi)          | Check whether the lines $3x-4y-3=0$ , $3x-4y-3=0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\frac{1}{1}$                                                                                                                                                                                                                                                                             |                                                                                                                                   |  |  |  |
| (vii          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                                                                                   |  |  |  |
| (viii         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                                                                                   |  |  |  |
| (ix)          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                                                                                   |  |  |  |
| (x)           | Write equations of the tangents to the circle $x^2 + y^2 - 4x + 6y + y^2 - 4x + y^$ |                                                                                                                                                                                                                                                                                           |                                                                                                                                   |  |  |  |
| 1,            | ordinate is $-2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                           |                                                                                                                                   |  |  |  |
| (xi)          | Find an equation of the parabola whose focus is $F(-3, 4)$ and direction of the ellipse having centre at $(0, 0)$ , focus at $(0, -3)$ and one vertex at $(0, 4)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                           |                                                                                                                                   |  |  |  |
| (xii          | Find an equation of the ellipse having centre at $(0, 0)$ , rectain $(\pm 2, 0)$ .  Find an equation of hyperbola whose foci are $(\pm 4, 0)$ and vertices $(\pm 2, 0)$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                           |                                                                                                                                   |  |  |  |
| (xii          | End on aguation of hyperbola whose Ioci a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | CTION                                                                                                                                                                                                                                                                                     | TT                                                                                                                                |  |  |  |
| L-            | SE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | CHUN                                                                                                                                                                                                                                                                                      | $3 \times 10 = 30$                                                                                                                |  |  |  |

|       |                                                                                                                                                                                                                                              | HOWA                                                                                                               | $3 \times 10 = 30$   |  |  |  |
|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------|--|--|--|
|       | E: Attempt any three questions.                                                                                                                                                                                                              | (b) Find by definition the derivative                                                                              | of $\cos \sqrt{x}$ . |  |  |  |
| 5.(a) | Prove that $\lim_{x\to 0} \frac{a^x-1}{x} = \log_e a$                                                                                                                                                                                        |                                                                                                                    |                      |  |  |  |
| 6.(a) | Evaluate $\int \frac{1}{x^4 + 2x^2 + 5}$ such                                                                                                                                                                                                | equations of two parallel lines perpendicular to $2x-y+3=0$ that product of $x-$ and $y-$ intercepts of each is 3. |                      |  |  |  |
| 7.(a) | Find the area bounded by the curve $y = x^3 - 4x$ and the $x$ -axis.                                                                                                                                                                         |                                                                                                                    |                      |  |  |  |
| (b)   | Maximize $f(x, y) = x + 3y$ subject to constraints $2x + 3y = 30$ , so                                                                                                                                                                       |                                                                                                                    |                      |  |  |  |
| 8.(a) | (a) Show that $y = x^x$ has minimum value at $x = \frac{1}{x^x}$                                                                                                                                                                             |                                                                                                                    |                      |  |  |  |
| (b)   | Find the equation of the circle passing through the points $A(4, 5)$ , $B(-4, -3)$ , $C(8, -3)$                                                                                                                                              |                                                                                                                    |                      |  |  |  |
| 9.(a) | Find the focus, vertex and directrix of parabola $x = 4x = 8y + 4$                                                                                                                                                                           |                                                                                                                    |                      |  |  |  |
| (b)   | Find the focus, vertex and directive of particles of $\beta$ and the focus, vertex and directive of particles $\beta$ .  Prove that by using vectors method $\cos(\alpha - \beta) = \cos\alpha \cos\beta + \sin\alpha \sin\beta$ .  [MULTAN] |                                                                                                                    |                      |  |  |  |